{"title":"A Numerical Study on Sparse Learning of Interaction Laws in Homogeneous Multiparticle Systems","authors":"Ritwik Trehan","doi":"10.1137/22s1469341","DOIUrl":null,"url":null,"abstract":". Multi-agent systems have found wide applications in science and engineering ranging from opinion dynamics to predator-prey systems. A grand challenge encountered in these areas is to reveal the interaction laws between individual agents leading to collective behaviors. In this article, we consider a system of ODEs that is often used in modeling opinion dynamics, where the laws of the interaction are dependent on pairwise distances. We leverage recent advancements in sparsity-promoted algo-rithms and propose a new approach to learning the interaction laws from a small amount of data. Numerical experiments demonstrate the effectiveness and robustness of the proposed approach in a small, noisy data regime and show the superiority of the proposed approach.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1469341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. Multi-agent systems have found wide applications in science and engineering ranging from opinion dynamics to predator-prey systems. A grand challenge encountered in these areas is to reveal the interaction laws between individual agents leading to collective behaviors. In this article, we consider a system of ODEs that is often used in modeling opinion dynamics, where the laws of the interaction are dependent on pairwise distances. We leverage recent advancements in sparsity-promoted algo-rithms and propose a new approach to learning the interaction laws from a small amount of data. Numerical experiments demonstrate the effectiveness and robustness of the proposed approach in a small, noisy data regime and show the superiority of the proposed approach.