Emily Diegel, Rhiannon Hicks, Max Prilutsky, R. Swan
{"title":"Quantifying Uncertainty in Ensemble Deep Learning","authors":"Emily Diegel, Rhiannon Hicks, Max Prilutsky, R. Swan","doi":"10.1137/22s1531816","DOIUrl":null,"url":null,"abstract":"Neural networks are an emerging topic in the data science industry due to their high versatility and efficiency with large data sets. Past research has utilized machine learning on experimental data in the material sciences and chemistry field to predict properties of metal oxides. Neural networks can determine underlying optical properties in complex images of metal oxides and capture essential features which are unrecognizable by observation. However, neural networks are often referred to as a “black box algorithm” due to the underlying process during the training of the model. This poses a concern on how robust and reliable the prediction model actually is. To solve this ensemble neural networks were created. By utilizing multiple networks instead of one the robustness of the model was increased and points of uncertainty were identified. Overall, ensemble neural networks outperform singular networks and demonstrate areas of uncertainty and robustness in the model.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1531816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neural networks are an emerging topic in the data science industry due to their high versatility and efficiency with large data sets. Past research has utilized machine learning on experimental data in the material sciences and chemistry field to predict properties of metal oxides. Neural networks can determine underlying optical properties in complex images of metal oxides and capture essential features which are unrecognizable by observation. However, neural networks are often referred to as a “black box algorithm” due to the underlying process during the training of the model. This poses a concern on how robust and reliable the prediction model actually is. To solve this ensemble neural networks were created. By utilizing multiple networks instead of one the robustness of the model was increased and points of uncertainty were identified. Overall, ensemble neural networks outperform singular networks and demonstrate areas of uncertainty and robustness in the model.