Indirect Electrochemical Analysis of Crocin in Phytochemical Sample

R. A. Dar, Pradeep Kumar Brahaman, S. Tiwari, K. S. Pitre
{"title":"Indirect Electrochemical Analysis of Crocin in Phytochemical Sample","authors":"R. A. Dar, Pradeep Kumar Brahaman, S. Tiwari, K. S. Pitre","doi":"10.1155/2012/967079","DOIUrl":null,"url":null,"abstract":"A new electroanalytical method has been developed for the quantitative determination of crocin in a sample of stigmas of saffron (Crocus sativus L.). Crocin is polarographically inactive. However, cysteine in 0.02 M NaCl, pH=5.2±0.01 produces a well defined wave/peak with E1/2/Ep= –0.47/–0.45 V vs. Ag/AgCl. On recording polarograms of a set of solution containing a fixed concentration of cysteine and varying concentrations of crocin under aforesaid experimental conditions a gradual decrease in peak height/diffusion current and a negative shift in peak potential was observed. Thus, indicating cysteine-crocin interaction. Amperometric titration indicated crocin to cysteine ratio of 1:2. The above amperometric titration procedure has been used to determine the concentration of crocin in a sample of saffron. Crystallization process was carried out for the extraction of crocin from dried powder of saffron stigmas. The crystallized crocin was identified by UV-Visible spectrophotometry(at 255 nm and 442 nm) and the quantitative analysis by the developed amperometric method. The concentration of crocin in saffron was found to be 2.13% and purity of isolated crocin 96.81%. The percent recovery varied from 98.56–100.31% and RSD (n=5) of 2.17%.The validation of the proposed procedure for the quantitative assay of crocin was examined via an evaluation of the repeatability, recovery, selectivity and relative standard deviation.","PeriodicalId":11519,"journal":{"name":"E-journal of Chemistry","volume":"9 1","pages":"918-925"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/967079","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/967079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A new electroanalytical method has been developed for the quantitative determination of crocin in a sample of stigmas of saffron (Crocus sativus L.). Crocin is polarographically inactive. However, cysteine in 0.02 M NaCl, pH=5.2±0.01 produces a well defined wave/peak with E1/2/Ep= –0.47/–0.45 V vs. Ag/AgCl. On recording polarograms of a set of solution containing a fixed concentration of cysteine and varying concentrations of crocin under aforesaid experimental conditions a gradual decrease in peak height/diffusion current and a negative shift in peak potential was observed. Thus, indicating cysteine-crocin interaction. Amperometric titration indicated crocin to cysteine ratio of 1:2. The above amperometric titration procedure has been used to determine the concentration of crocin in a sample of saffron. Crystallization process was carried out for the extraction of crocin from dried powder of saffron stigmas. The crystallized crocin was identified by UV-Visible spectrophotometry(at 255 nm and 442 nm) and the quantitative analysis by the developed amperometric method. The concentration of crocin in saffron was found to be 2.13% and purity of isolated crocin 96.81%. The percent recovery varied from 98.56–100.31% and RSD (n=5) of 2.17%.The validation of the proposed procedure for the quantitative assay of crocin was examined via an evaluation of the repeatability, recovery, selectivity and relative standard deviation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物化学样品中藏红花素的间接电化学分析
建立了藏红花柱头中藏红花素的电分析法。藏红花素在极谱上无活性。然而,半胱氨酸在0.02 M NaCl, pH=5.2±0.01条件下,与Ag/AgCl相比,E1/2/Ep= -0.47 / -0.45 V,产生清晰的波/峰。在上述实验条件下,记录一组含有固定浓度半胱氨酸和不同浓度藏红花素的溶液的极谱图,观察到峰高/扩散电流逐渐降低,峰电位呈负移动。因此,表明半胱氨酸-藏红花素相互作用。电流滴定显示藏红花素与半胱氨酸的比例为1:2。上述安培滴定法已用于测定藏红花样品中藏红花素的浓度。采用结晶法从藏红花柱头干粉中提取藏红花素。采用紫外可见分光光度法(255 nm和442 nm)对结晶的藏红花素进行了鉴定,并采用建立的安培法进行了定量分析。藏红花中藏红花素的含量为2.13%,藏红花素的纯度为96.81%。回收率为98.56 ~ 100.31%,RSD (n=5)为2.17%。通过对重复性、回收率、选择性和相对标准偏差的评价,验证了藏红花素定量分析方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
E-journal of Chemistry
E-journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Screening for Hypoglycemic Activity on The Leaf Extracts of Nine Medicinal Plants: In-Vivo Evaluation Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties Preparation and Characterization of Chitosan/Agar Blended Films: Part 1. Chemical Structure and Morphology Characterization of Extracellular Dextranase from a Novel Halophilic Bacillus subtilis NRC-B233b a Mutagenic Honey Isolate under Solid State Fermentation Comparison of Catalysts Preyssler and Silica-Supported Nano Preyssler in the Synthesis of Acetyl Salicylic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1