Search for Rare Copy-Number Variants in Congenital Heart Defects Identifies Novel Candidate Genes and a Potential Role for FOXC1 in Patients With Coarctation of the Aorta
M. Sanchez‐Castro, Hadja Eldjouzi, Eric Charpentier, P. Busson, Q. Hauet, P. Lindenbaum, Béatrice Delasalle-Guyomarch, Adrien Baudry, Olivier Pichon, Cécile Pascal, B. Lefort, F. Bajolle, P. Pezard, J. Schott, C. Dina, R. Redon, V. Gournay, D. Bonnet, C. Le Caignec
{"title":"Search for Rare Copy-Number Variants in Congenital Heart Defects Identifies Novel Candidate Genes and a Potential Role for FOXC1 in Patients With Coarctation of the Aorta","authors":"M. Sanchez‐Castro, Hadja Eldjouzi, Eric Charpentier, P. Busson, Q. Hauet, P. Lindenbaum, Béatrice Delasalle-Guyomarch, Adrien Baudry, Olivier Pichon, Cécile Pascal, B. Lefort, F. Bajolle, P. Pezard, J. Schott, C. Dina, R. Redon, V. Gournay, D. Bonnet, C. Le Caignec","doi":"10.1161/CIRCGENETICS.115.001213","DOIUrl":null,"url":null,"abstract":"Background—Congenital heart defects are the most frequent malformations among newborns and a frequent cause of morbidity and mortality. Although genetic variation contributes to congenital heart defects, their precise molecular bases remain unknown in the majority of patients. Methods and Results—We analyzed, by high-resolution array comparative genomic hybridization, 316 children with sporadic, nonsyndromic congenital heart defects, including 76 coarctation of the aorta, 159 transposition of the great arteries, and 81 tetralogy of Fallot, as well as their unaffected parents. We identified by array comparative genomic hybridization, and validated by quantitative real-time polymerase chain reaction, 71 rare de novo (n=8) or inherited (n=63) copy-number variants (CNVs; 50 duplications and 21 deletions) in patients. We identified 113 candidate genes for congenital heart defects within these CNVs, including BTRC, CHRNB3, CSRP2BP, ERBB2, ERMARD, GLIS3, PLN, PTPRJ, RLN3, and TCTE3. No de novo CNVs were identified in patients with transposition of the great arteries in contrast to coarctation of the aorta and tetralogy of Fallot (P=0.002; Fisher exact test). A search for transcription factor binding sites showed that 93% of the rare CNVs identified in patients with coarctation of the aorta contained at least 1 gene with FOXC1-binding sites. This significant enrichment (P<0.0001; permutation test) was not observed for the CNVs identified in patients with transposition of the great arteries and tetralogy of Fallot. We hypothesize that these CNVs may alter the expression of genes regulated by FOXC1. Foxc1 belongs to the forkhead transcription factors family, which plays a critical role in cardiovascular development in mice. Conclusions—These data suggest that deregulation of FOXC1 or its downstream genes play a major role in the pathogenesis of coarctation of the aorta in humans.","PeriodicalId":48940,"journal":{"name":"Circulation-Cardiovascular Genetics","volume":"9 1","pages":"86–94"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.115.001213","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation-Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.115.001213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 31
Abstract
Background—Congenital heart defects are the most frequent malformations among newborns and a frequent cause of morbidity and mortality. Although genetic variation contributes to congenital heart defects, their precise molecular bases remain unknown in the majority of patients. Methods and Results—We analyzed, by high-resolution array comparative genomic hybridization, 316 children with sporadic, nonsyndromic congenital heart defects, including 76 coarctation of the aorta, 159 transposition of the great arteries, and 81 tetralogy of Fallot, as well as their unaffected parents. We identified by array comparative genomic hybridization, and validated by quantitative real-time polymerase chain reaction, 71 rare de novo (n=8) or inherited (n=63) copy-number variants (CNVs; 50 duplications and 21 deletions) in patients. We identified 113 candidate genes for congenital heart defects within these CNVs, including BTRC, CHRNB3, CSRP2BP, ERBB2, ERMARD, GLIS3, PLN, PTPRJ, RLN3, and TCTE3. No de novo CNVs were identified in patients with transposition of the great arteries in contrast to coarctation of the aorta and tetralogy of Fallot (P=0.002; Fisher exact test). A search for transcription factor binding sites showed that 93% of the rare CNVs identified in patients with coarctation of the aorta contained at least 1 gene with FOXC1-binding sites. This significant enrichment (P<0.0001; permutation test) was not observed for the CNVs identified in patients with transposition of the great arteries and tetralogy of Fallot. We hypothesize that these CNVs may alter the expression of genes regulated by FOXC1. Foxc1 belongs to the forkhead transcription factors family, which plays a critical role in cardiovascular development in mice. Conclusions—These data suggest that deregulation of FOXC1 or its downstream genes play a major role in the pathogenesis of coarctation of the aorta in humans.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease. Manuscripts are examined by the editorial staff and usually evaluated by expert reviewers assigned by the editors. Both clinical and basic articles will also be subject to statistical review, when appropriate. Provisional or final acceptance is based on originality, scientific content, and topical balance of the journal. Decisions are communicated by email, generally within six weeks. The editors will not discuss a decision about a manuscript over the phone. All rebuttals must be submitted in writing to the editorial office.