A. Milano, M. Blom, Elisabeth M. Lodder, D. A. van Hoeijen, J. Barc, T. Koopmann, A. Bardai, L. Beekman, P. Lichtner, M. P. van den Berg, A. Wilde, C. Bezzina, H. Tan
{"title":"Sudden Cardiac Arrest and Rare Genetic Variants in the Community","authors":"A. Milano, M. Blom, Elisabeth M. Lodder, D. A. van Hoeijen, J. Barc, T. Koopmann, A. Bardai, L. Beekman, P. Lichtner, M. P. van den Berg, A. Wilde, C. Bezzina, H. Tan","doi":"10.1161/CIRCGENETICS.115.001263","DOIUrl":null,"url":null,"abstract":"Background—Sudden cardiac arrest (SCA) ranks among the most common causes of death worldwide. Because SCA is most often lethal, yet mostly occurs in individuals without previously known cardiac disease, the identification of patients at risk for SCA could save many lives. In unselected SCA victims from the community, common genetic variants (which are not disease-causing per se, but may increase susceptibility to ventricular fibrillation) are found to be associated with increased SCA risk. However, whether rare genetic variants contribute to SCA risk in the community is largely unexplored. Methods and Results—We here investigated the involvement of rare genetic variants in SCA risk at the population level by studying the prevalence of 6 founder genetic variants present in the Dutch population (PLN-p.Arg14del, MYBPC3-p.Trp792fsX17, MYBPC3-p.Arg943X, MYBPC3-p.Pro955fsX95, PKP2-p.Arg79X, and the Chr7q36 idiopathic ventricular fibrillation risk haplotype) in a cohort of 1440 unselected Dutch SCA victims included in the Amsterdam Resuscitation Study (ARREST). The six studied founder mutations were found to be more prevalent (1.1%) in the ARREST SCA cohort compared with an ethnically and geographically matched set of controls (0.4%, n=1379; P<0.05) or a set of Dutch individuals drawn from the Genome of the Netherlands (GoNL) study (0%, n=500; P<0.02). Conclusions—This finding provides proof-of-concept for the notion that rare genetic variants contribute to some extent to SCA risk in the community.","PeriodicalId":48940,"journal":{"name":"Circulation-Cardiovascular Genetics","volume":"9 1","pages":"147–153"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1161/CIRCGENETICS.115.001263","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation-Cardiovascular Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/CIRCGENETICS.115.001263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 26
Abstract
Background—Sudden cardiac arrest (SCA) ranks among the most common causes of death worldwide. Because SCA is most often lethal, yet mostly occurs in individuals without previously known cardiac disease, the identification of patients at risk for SCA could save many lives. In unselected SCA victims from the community, common genetic variants (which are not disease-causing per se, but may increase susceptibility to ventricular fibrillation) are found to be associated with increased SCA risk. However, whether rare genetic variants contribute to SCA risk in the community is largely unexplored. Methods and Results—We here investigated the involvement of rare genetic variants in SCA risk at the population level by studying the prevalence of 6 founder genetic variants present in the Dutch population (PLN-p.Arg14del, MYBPC3-p.Trp792fsX17, MYBPC3-p.Arg943X, MYBPC3-p.Pro955fsX95, PKP2-p.Arg79X, and the Chr7q36 idiopathic ventricular fibrillation risk haplotype) in a cohort of 1440 unselected Dutch SCA victims included in the Amsterdam Resuscitation Study (ARREST). The six studied founder mutations were found to be more prevalent (1.1%) in the ARREST SCA cohort compared with an ethnically and geographically matched set of controls (0.4%, n=1379; P<0.05) or a set of Dutch individuals drawn from the Genome of the Netherlands (GoNL) study (0%, n=500; P<0.02). Conclusions—This finding provides proof-of-concept for the notion that rare genetic variants contribute to some extent to SCA risk in the community.
期刊介绍:
Circulation: Genomic and Precision Medicine considers all types of original research articles, including studies conducted in human subjects, laboratory animals, in vitro, and in silico. Articles may include investigations of: clinical genetics as applied to the diagnosis and management of monogenic or oligogenic cardiovascular disorders; the molecular basis of complex cardiovascular disorders, including genome-wide association studies, exome and genome sequencing-based association studies, coding variant association studies, genetic linkage studies, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics; integration of electronic health record data or patient-generated data with any of the aforementioned approaches, including phenome-wide association studies, or with environmental or lifestyle factors; pharmacogenomics; regulation of gene expression; gene therapy and therapeutic genomic editing; systems biology approaches to the diagnosis and management of cardiovascular disorders; novel methods to perform any of the aforementioned studies; and novel applications of precision medicine. Above all, we seek studies with relevance to human cardiovascular biology and disease. Manuscripts are examined by the editorial staff and usually evaluated by expert reviewers assigned by the editors. Both clinical and basic articles will also be subject to statistical review, when appropriate. Provisional or final acceptance is based on originality, scientific content, and topical balance of the journal. Decisions are communicated by email, generally within six weeks. The editors will not discuss a decision about a manuscript over the phone. All rebuttals must be submitted in writing to the editorial office.