Electrodeposition of Oriented Cerium Oxide Films

IF 2 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2013-10-27 DOI:10.1155/2013/482187
A. Wang, T. Golden
{"title":"Electrodeposition of Oriented Cerium Oxide Films","authors":"A. Wang, T. Golden","doi":"10.1155/2013/482187","DOIUrl":null,"url":null,"abstract":"Cerium oxide films of preferred orientation are electrodeposited under anodic conditions. A complexing ligand, acetate, was used to stabilize the cerium (III) ion in solution for deposition of the thin films. Fourier transform infrared spectroscopy showed that the ligand and metal tended to bind as a weakly bidentate complex. The crystallite size of the films was in the nanometer range as shown by Raman spectroscopy and was calculated from X-ray diffraction data. Crystallite sizes from 6 to 20 nm were obtained under the anodic deposition conditions. Sintering of the (111) oriented films showed an increase in the (111) orientation with temperatures up to 900°C. Also, the crystallite size increased from 20 nm to 120 nm under sintering conditions. Addition of the deposited films to the substrate improved corrosion resistance for the substrate.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2013 1","pages":"1-10"},"PeriodicalIF":2.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/482187","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/482187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 35

Abstract

Cerium oxide films of preferred orientation are electrodeposited under anodic conditions. A complexing ligand, acetate, was used to stabilize the cerium (III) ion in solution for deposition of the thin films. Fourier transform infrared spectroscopy showed that the ligand and metal tended to bind as a weakly bidentate complex. The crystallite size of the films was in the nanometer range as shown by Raman spectroscopy and was calculated from X-ray diffraction data. Crystallite sizes from 6 to 20 nm were obtained under the anodic deposition conditions. Sintering of the (111) oriented films showed an increase in the (111) orientation with temperatures up to 900°C. Also, the crystallite size increased from 20 nm to 120 nm under sintering conditions. Addition of the deposited films to the substrate improved corrosion resistance for the substrate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定向氧化铈薄膜的电沉积
在阳极条件下电沉积了优选取向的氧化铈薄膜。用络合配体醋酸酯稳定溶液中的铈(III)离子,制备薄膜。傅里叶变换红外光谱表明,配体与金属倾向于结合成弱双齿配合物。通过拉曼光谱和x射线衍射数据计算,薄膜的晶粒尺寸在纳米级范围内。在阳极沉积条件下获得了6 ~ 20 nm的晶粒尺寸。当温度达到900℃时,(111)取向薄膜的烧结表现出(111)取向的增加。在烧结条件下,晶粒尺寸由20 nm增大到120 nm。在衬底上添加沉积膜提高了衬底的耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1