Effect of Nitrogen Implantation on Metal Transfer during Sliding Wear under Ambient Conditions

IF 1.5 Q3 ENGINEERING, MECHANICAL Advances in Tribology Pub Date : 2013-03-21 DOI:10.1155/2013/492858
L. Autry, H. Marcus
{"title":"Effect of Nitrogen Implantation on Metal Transfer during Sliding Wear under Ambient Conditions","authors":"L. Autry, H. Marcus","doi":"10.1155/2013/492858","DOIUrl":null,"url":null,"abstract":"Nitrogen implantation in Interstitial-Free steel was evaluated for its impact on metal transfer and 1100 Al rider wear. It was determined that nitrogen implantation reduced metal transfer in a trend that increased with dose; the Archard wear coefficient reductions of two orders of magnitude were achieved using a dose of 2e17 ions/cm2, 100 kV. Cold-rolling the steel and making volumetric wear measurements of the Al-rider determined that the hardness of the harder material had little impact on volumetric wear or friction. Nitrogen implantation had chemically affected the tribological process studied in two ways: directly reducing the rider wear and reducing the fraction of rider wear that ended up sticking to the ISF steel surface. The structure of the nitrogen in the ISF steel did not affect the tribological behavior because no differences in friction/wear measurements were detected after postimplantation heat treating to decompose the as-implanted e-Fe3N to γ-Fe4N. The fraction of rider-wear sticking to the steel depended primarily on the near-surface nitrogen content. Covariance analysis of the debris oxygen and nitrogen contents indicated that nitrogen implantation enhanced the tribo-oxidation process with reference to the unimplanted material. As a result, the reduction in metal transfer was likely related to the observed tribo-oxidation in addition to the introduction of nitride wear elements into the debris. The primary Al rider wear mechanism was stick-slip, and implantation reduced the friction and friction noise associated with that wear mechanism. Calculations based on the Tabor junction growth formula indicate that the mitigation of the stick-slip mechanism resulted from a reduced adhesive strength at the interface during the sticking phase.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/492858","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/492858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Nitrogen implantation in Interstitial-Free steel was evaluated for its impact on metal transfer and 1100 Al rider wear. It was determined that nitrogen implantation reduced metal transfer in a trend that increased with dose; the Archard wear coefficient reductions of two orders of magnitude were achieved using a dose of 2e17 ions/cm2, 100 kV. Cold-rolling the steel and making volumetric wear measurements of the Al-rider determined that the hardness of the harder material had little impact on volumetric wear or friction. Nitrogen implantation had chemically affected the tribological process studied in two ways: directly reducing the rider wear and reducing the fraction of rider wear that ended up sticking to the ISF steel surface. The structure of the nitrogen in the ISF steel did not affect the tribological behavior because no differences in friction/wear measurements were detected after postimplantation heat treating to decompose the as-implanted e-Fe3N to γ-Fe4N. The fraction of rider-wear sticking to the steel depended primarily on the near-surface nitrogen content. Covariance analysis of the debris oxygen and nitrogen contents indicated that nitrogen implantation enhanced the tribo-oxidation process with reference to the unimplanted material. As a result, the reduction in metal transfer was likely related to the observed tribo-oxidation in addition to the introduction of nitride wear elements into the debris. The primary Al rider wear mechanism was stick-slip, and implantation reduced the friction and friction noise associated with that wear mechanism. Calculations based on the Tabor junction growth formula indicate that the mitigation of the stick-slip mechanism resulted from a reduced adhesive strength at the interface during the sticking phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境条件下氮注入对滑动磨损过程中金属转移的影响
研究了无间隙钢氮注入对金属转移和1100 Al衬垫磨损的影响。结果表明,氮注入对金属转移有随剂量增加而增加的趋势;使用2e17离子/cm2, 100 kV的剂量时,Archard磨损系数降低了两个数量级。对钢进行冷轧并对Al-rider进行体积磨损测量,确定较硬材料的硬度对体积磨损或摩擦的影响很小。氮注入通过两种方式对摩擦过程产生化学影响:直接减少托座磨损和减少托座磨损最终粘附在ISF钢表面的比例。氮的结构对ISF钢的摩擦学行为没有影响,因为在植入后热处理将植入的e-Fe3N分解为γ-Fe4N后,摩擦磨损测量结果没有变化。骑手磨损物粘附在钢上的比例主要取决于近表面氮含量。对碎屑氧、氮含量的协方差分析表明,相对于未注入的材料,注入氮气增强了摩擦氧化过程。因此,金属转移的减少可能与观察到的摩擦氧化有关,此外还有氮化物磨损元素进入碎片。Al衬垫的主要磨损机制是粘滑磨损,注入降低了与粘滑磨损机制相关的摩擦和摩擦噪声。基于Tabor结生长公式的计算表明,粘滑机制的缓解是由于粘接阶段界面的粘接强度降低所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Experimental Comparison of the Effect of Using Synthetic, Semi-Synthetic, and Mineral Engine Oil on Gasoline Engine Parts Wear A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels Mathematical Modeling of the Bearing Ratio Curve Rmr (50% Rz), through Investigation of the Effect of Process Parameters in Hard Turning of Steel C55 (DIN) with Mixed Ceramics MC2 (Al2O3 + TiC) Tribological and Mechanical Properties of Gradient Coating on Al2O3-Based Coating Produced by Detonation Spraying Methods Investigation on the Cutting Force and Surface Quality in Harmonically Vibrated Broaching (HVB)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1