Enabling Canonical Analysis Workflows Documented Data Harmonization on Global Air Quality Data

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2022-04-01 DOI:10.1162/dint_a_00130
S. Schröder, Eleonora Epp, A. Mozaffari, M. Romberg, Niklas Selke, M. Schultz
{"title":"Enabling Canonical Analysis Workflows Documented Data Harmonization on Global Air Quality Data","authors":"S. Schröder, Eleonora Epp, A. Mozaffari, M. Romberg, Niklas Selke, M. Schultz","doi":"10.1162/dint_a_00130","DOIUrl":null,"url":null,"abstract":"Abstract Data harmonization and documentation of the data processing are essential prerequisites for enabling Canonical Analysis Workflows. The recently revised Terabyte-scale air quality database system, which the Tropospheric Ozone Assessment Report (TOAR) created, contains one of the world's largest collections of near-surface air quality measurements and considers FAIR data principles as an integral part. A special feature of our data service is the on-demand processing and product generation of several air quality metrics directly from the underlying database. In this paper, we show that the necessary data harmonization for establishing such online analysis services goes much deeper than the obvious issues of common data formats, variable names, and measurement units, and we explore how the generation of FAIR Digital Objects (FDO) in combination with automatically generated documentation may support Canonical Analysis Workflows for air quality and related data.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"4 1","pages":"259-270"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00130","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Data harmonization and documentation of the data processing are essential prerequisites for enabling Canonical Analysis Workflows. The recently revised Terabyte-scale air quality database system, which the Tropospheric Ozone Assessment Report (TOAR) created, contains one of the world's largest collections of near-surface air quality measurements and considers FAIR data principles as an integral part. A special feature of our data service is the on-demand processing and product generation of several air quality metrics directly from the underlying database. In this paper, we show that the necessary data harmonization for establishing such online analysis services goes much deeper than the obvious issues of common data formats, variable names, and measurement units, and we explore how the generation of FAIR Digital Objects (FDO) in combination with automatically generated documentation may support Canonical Analysis Workflows for air quality and related data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现全球空气质量数据规范化分析工作流程文档化数据协调
数据协调和数据处理的文档化是实现规范化分析工作流的必要先决条件。由对流层臭氧评估报告(TOAR)创建的最近修订的tb级空气质量数据库系统包含世界上最大的近地面空气质量测量数据集之一,并将FAIR数据原则视为不可或缺的一部分。我们数据服务的一个特殊功能是直接从底层数据库按需处理和生成几个空气质量指标。在本文中,我们表明,建立这种在线分析服务所需的数据协调要比常见数据格式、变量名称和测量单位的明显问题深入得多,并且我们探索了FAIR数字对象(FDO)的生成与自动生成的文档相结合如何支持空气质量和相关数据的规范分析工作流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1