Properties of an A-current in slowly and rapidly adapting stretch receptor neurones of lobster

W. Grampp, S. Theander
{"title":"Properties of an A-current in slowly and rapidly adapting stretch receptor neurones of lobster","authors":"W. Grampp, S. Theander","doi":"10.1163/092996397750132008","DOIUrl":null,"url":null,"abstract":"A previously unnoticed outward membrane current has been identified, characterized and specified as a so-called A-current in the slowly and rapidly adapting lobster stretch receptor neurone. In both cells the current was, after blockage of a tetrodotoxin-sensitive Na + current and a tetraethylammonium- and 4-aminopyridine-sensitive delayed rectifier current, seen to activate fully within about 25 ms of square-shaped depolarizations beyond voltage levels of -40 to -30 mV and, then, to inactivate completely with a (voltage independent, within the voltage span under observation) time constant of 110 ms. The A-currents of rapidly and slowly adapting receptors were noticed to differ significantly from each other in that the A-current of the rapidly adapting cell is activated, and inactivated, at 10-15 mV more negative voltage levels than the A-current of the slowly adapting cell. Also, the maximum permeability of the A-channel system appeared to be distinctly larger in the rapidly than in the slowly adapting cell. Both of these circumstances were able to explain why, at a given level of membrane depolarization, a markedly stronger A-current is activated in the rapidly than in the slowly adapting cell. On the basis of experimental data it was possible to formulate a mathematical A-current description which was incorporated into a previously published model of the lobster stretch receptor neurone. Using this model, evidence was obtained that the A-current may play a functionally significant role (in the rapidly adapting cell) by increasing the speed of action potential repolarization and thereby enhancing the cell's dynamic stimulus sensitivity.","PeriodicalId":82360,"journal":{"name":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","volume":"2 1","pages":"211-227"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/092996397750132008","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Primary sensory neuron : the international interdisciplinary journal reporting basic and clinical research on sensory receptors and primary afferent neurons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/092996397750132008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A previously unnoticed outward membrane current has been identified, characterized and specified as a so-called A-current in the slowly and rapidly adapting lobster stretch receptor neurone. In both cells the current was, after blockage of a tetrodotoxin-sensitive Na + current and a tetraethylammonium- and 4-aminopyridine-sensitive delayed rectifier current, seen to activate fully within about 25 ms of square-shaped depolarizations beyond voltage levels of -40 to -30 mV and, then, to inactivate completely with a (voltage independent, within the voltage span under observation) time constant of 110 ms. The A-currents of rapidly and slowly adapting receptors were noticed to differ significantly from each other in that the A-current of the rapidly adapting cell is activated, and inactivated, at 10-15 mV more negative voltage levels than the A-current of the slowly adapting cell. Also, the maximum permeability of the A-channel system appeared to be distinctly larger in the rapidly than in the slowly adapting cell. Both of these circumstances were able to explain why, at a given level of membrane depolarization, a markedly stronger A-current is activated in the rapidly than in the slowly adapting cell. On the basis of experimental data it was possible to formulate a mathematical A-current description which was incorporated into a previously published model of the lobster stretch receptor neurone. Using this model, evidence was obtained that the A-current may play a functionally significant role (in the rapidly adapting cell) by increasing the speed of action potential repolarization and thereby enhancing the cell's dynamic stimulus sensitivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
龙虾慢速和快速适应拉伸受体神经元中a电流的特性
在缓慢和快速适应的龙虾拉伸受体神经元中,一种以前未被注意到的向外膜电流被识别、表征并指定为所谓的A电流。在这两个细胞中,在河蟹毒素敏感的Na +电流和四乙基铵和4-氨基嘧啶敏感的延迟整流电流阻断后,电流在超过-40至-30 mV电压水平的正方形去极化约25 ms内完全激活,然后以110 ms的时间常数(与电压无关,在观察的电压范围内)完全失活。快速和缓慢适应受体的a电流存在显著差异,快速适应细胞的a电流在比缓慢适应细胞的a电流多10-15 mV的负电压水平下激活和灭活。同时,快速适应细胞的a通道系统的最大通透性明显大于缓慢适应细胞。这两种情况都能够解释为什么在给定的膜去极化水平下,快速适应的细胞比缓慢适应的细胞激活明显更强的a电流。在实验数据的基础上,有可能制定一个数学的a电流描述,并将其纳入先前发表的龙虾拉伸受体神经元模型中。利用该模型,我们发现a电流可能通过增加动作电位复极化的速度,从而提高细胞的动态刺激敏感性,在快速适应细胞中发挥了重要的功能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hair cells of a congenitally hearing impaired canary have abnormal distribution of filamentous proteins The gene for a RING zinc finger protein is expressed in the chick inner ear after noise exposure The effect of tetraethylammonium and 4-aminopyridine on mechano- and electrosensitive channels of the Pacinian corpuscle Lack of specificity in the interactions of cranial sensory and motoneuron axons in vitro Transformation of pressure- and heat-induced discharges of feline cutaneous C-fiber mechano-heat-sensitive units by lidocaine and N-propylajmaline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1