J. Sukumaran, R. Keresztes, G. Kalácska, H. Al-Maliki, P. Neis, P. Baets
{"title":"Extruded and Injection Moulded Virgin PA 6/6 as Abrasion Resistant Material","authors":"J. Sukumaran, R. Keresztes, G. Kalácska, H. Al-Maliki, P. Neis, P. Baets","doi":"10.1155/2017/1035017","DOIUrl":null,"url":null,"abstract":"Polyamide (PA6/6) is often used as a tribological pair in abrasion prevalent applications such as hinges and sliders. PA6/6 is frequently processed by injection moulding and extrusion process. It is known that these processes influence the polymers mechanical behaviour, but their influence on the polymers wear response has not been studied. Hence the present research attempts to study the influence of different manufacturing processes on tribological behaviour for PA6/6. Wear tests were performed on a pin abrading tester (DIN 50322). Abrasion resistance of both extruded and injection moulded PA6/6 were tested at different loads (20 and 35 N). Single-pass (nonoverlapping mode) and multipass testing (overlapping mode) were used to understand the influence of clogging of wear debris. It is evidenced that with increasing load the specific wear rate decreases; moreover, fine abrasives tend to reduce the wear rate. In multipass testing a transfer layer clogged on the counterface that acted as a protective agent and lowers wear rate. Poor mechanical strength of injection moulded polymers is apparently compensated by microstructural response for having a similar wear behaviour between extruded and injection moulded PA 6/6. Hence a proper balance between microstructural and mechanical characteristics is an absolute must in PA 6/6 for better wear performance.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/1035017","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/1035017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Polyamide (PA6/6) is often used as a tribological pair in abrasion prevalent applications such as hinges and sliders. PA6/6 is frequently processed by injection moulding and extrusion process. It is known that these processes influence the polymers mechanical behaviour, but their influence on the polymers wear response has not been studied. Hence the present research attempts to study the influence of different manufacturing processes on tribological behaviour for PA6/6. Wear tests were performed on a pin abrading tester (DIN 50322). Abrasion resistance of both extruded and injection moulded PA6/6 were tested at different loads (20 and 35 N). Single-pass (nonoverlapping mode) and multipass testing (overlapping mode) were used to understand the influence of clogging of wear debris. It is evidenced that with increasing load the specific wear rate decreases; moreover, fine abrasives tend to reduce the wear rate. In multipass testing a transfer layer clogged on the counterface that acted as a protective agent and lowers wear rate. Poor mechanical strength of injection moulded polymers is apparently compensated by microstructural response for having a similar wear behaviour between extruded and injection moulded PA 6/6. Hence a proper balance between microstructural and mechanical characteristics is an absolute must in PA 6/6 for better wear performance.