{"title":"Diacritical Seismic Signatures for Complex Geological Structures: Case Studies from Shushan Basin (Egypt) and Arkoma Basin (USA)","authors":"M. Abdel-Fattah, H. Alrefaee","doi":"10.1155/2014/876180","DOIUrl":null,"url":null,"abstract":"Seismic reflection techniques show an imperative role in imaging complex geological structures and are becoming more acceptable as data interpreting tools in 2D/3D view. These subsurface geological structures provide complex seismic signature due to their geometrical behavior. Consequently, it is extremely difficult to interpret these seismic sections in terms of subsurface configuration. The main goal of this paper is to introduce seismic attributes as a powerful tool to interpret complex geological structures in different geological settings. In order to image these complex geological features, multiple seismic attributes such as coherence and curvature have been applied to the seismic data generated over the Shushan Basin (Egypt) and Arkoma Basin (USA). Each type of geological structure event usually generates a unique seismic “signature” that we can recognize and identify by using these seismic attributes. In Shushan Basin (Egypt), they provide a framework and constraint during the interpretation and can help prevent mistakes during a 3D structural modeling. In Arkoma Basin (USA), the seismic attributes results provide useful information for broader analyses of the complex structural relations in the region where the Ouachita orogenic belt intersects with the southern Oklahoma aulacogen. Finally, complex geological structures provide dramatically diacritical seismic signatures that can be easily interpreted by collaborating conventional seismic interpretation techniques with multiple seismic attributes.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2014-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/876180","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/876180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 17
Abstract
Seismic reflection techniques show an imperative role in imaging complex geological structures and are becoming more acceptable as data interpreting tools in 2D/3D view. These subsurface geological structures provide complex seismic signature due to their geometrical behavior. Consequently, it is extremely difficult to interpret these seismic sections in terms of subsurface configuration. The main goal of this paper is to introduce seismic attributes as a powerful tool to interpret complex geological structures in different geological settings. In order to image these complex geological features, multiple seismic attributes such as coherence and curvature have been applied to the seismic data generated over the Shushan Basin (Egypt) and Arkoma Basin (USA). Each type of geological structure event usually generates a unique seismic “signature” that we can recognize and identify by using these seismic attributes. In Shushan Basin (Egypt), they provide a framework and constraint during the interpretation and can help prevent mistakes during a 3D structural modeling. In Arkoma Basin (USA), the seismic attributes results provide useful information for broader analyses of the complex structural relations in the region where the Ouachita orogenic belt intersects with the southern Oklahoma aulacogen. Finally, complex geological structures provide dramatically diacritical seismic signatures that can be easily interpreted by collaborating conventional seismic interpretation techniques with multiple seismic attributes.
期刊介绍:
International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.