Role of Indium Alloying with Lead as a Means to Reduce the Passivation Phenomena in Lead/Acid Batteries

IF 2.3 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2014-09-23 DOI:10.1155/2014/932654
A. El-Sayed, H. Mohran, H. A. Shilkamy
{"title":"Role of Indium Alloying with Lead as a Means to Reduce the Passivation Phenomena in Lead/Acid Batteries","authors":"A. El-Sayed, H. Mohran, H. A. Shilkamy","doi":"10.1155/2014/932654","DOIUrl":null,"url":null,"abstract":"The influence of indium content on the anodic behaviour of Pb-In alloys in 4 M H2SO4 solution is investigated by potentiodynamic, potentiostatic, chronopotentiometric, and cyclic voltammetric techniques. The composition and microstructure of the corrosion layer on Pb-In alloys are characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), and scanning electron microscopy (SEM). The potentiodynamic and chronopotentiometric curves show that the anodic behavior of all investigated electrodes exhibits active/passive transition. The active dissolution (except for alloy I) and passive currents increase with increasing both In content and temperature. This indicates that the conductivity of the anodic film on Pb-In alloy is enhanced. This study exhibits that indium catalyses the oxidation of Pb (II) to Pb (IV) and facilitates the formation of a more highly conductive corrosion layer on lead. Alloy I (0.5% In) exhibits that the corrosion rate is lower, while the passive current is higher than that of Pb. XRD, EDX, and SEM results reveal that the formation of both PbSO4 and PbO on the surface decreases gradually with increasing In level in the alloy and completely disappear at higher In content (15% In). Therefore, recharge of the battery will be improved due to indium addition to Pb.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2014-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/932654","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/932654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 9

Abstract

The influence of indium content on the anodic behaviour of Pb-In alloys in 4 M H2SO4 solution is investigated by potentiodynamic, potentiostatic, chronopotentiometric, and cyclic voltammetric techniques. The composition and microstructure of the corrosion layer on Pb-In alloys are characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDX), and scanning electron microscopy (SEM). The potentiodynamic and chronopotentiometric curves show that the anodic behavior of all investigated electrodes exhibits active/passive transition. The active dissolution (except for alloy I) and passive currents increase with increasing both In content and temperature. This indicates that the conductivity of the anodic film on Pb-In alloy is enhanced. This study exhibits that indium catalyses the oxidation of Pb (II) to Pb (IV) and facilitates the formation of a more highly conductive corrosion layer on lead. Alloy I (0.5% In) exhibits that the corrosion rate is lower, while the passive current is higher than that of Pb. XRD, EDX, and SEM results reveal that the formation of both PbSO4 and PbO on the surface decreases gradually with increasing In level in the alloy and completely disappear at higher In content (15% In). Therefore, recharge of the battery will be improved due to indium addition to Pb.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铟与铅合金化在减少铅酸电池钝化现象中的作用
采用动电位法、恒电位法、计时电位法和循环伏安法研究了铟含量对Pb-In合金在4 M H2SO4溶液中阳极行为的影响。采用x射线衍射仪(XRD)、能量色散x射线能谱仪(EDX)和扫描电镜(SEM)对Pb-In合金腐蚀层的组成和微观结构进行了表征。电位学和时间电位曲线表明,所有电极的阳极行为都表现出主动/被动转变。随着In含量和温度的升高,活性溶解(除合金I外)和无源电流均增大。这表明在Pb-In合金上阳极膜的导电性得到了增强。本研究表明,铟催化Pb (II)氧化为Pb (IV),并促进铅表面形成更高导电性的腐蚀层。合金I (0.5% In)表现出较低的腐蚀速率,但无源电流高于Pb。XRD、EDX和SEM结果表明,随着合金中In含量的增加,表面PbSO4和PbO的生成逐渐减少,当In含量达到15%时,表面PbSO4和PbO的生成完全消失。因此,由于在Pb中加入铟,电池的充电能力将得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1