{"title":"Ranking Multi Criteria Decision Making Methods for a Problem by Area Under Receiver Operating Characteristic","authors":"Seyed Behnam Khakbaz, Maryam Karimi Davijani","doi":"10.11648/J.JIM.20150405.21","DOIUrl":null,"url":null,"abstract":"One of the major challenges in decision making is selection among MCDM (multi criteria decision making) methods. These methods do not provide same answer to decision maker. Therefore selecting the best answer is an important dilemma. To solve this problem, methods like Borda and Copeland compilation have been proposed. However, applying these methods leads to a hybrid solution which is not necessarily the best answer. In this paper a new approach is proposed to rank different MCDM methods. This approach is AUROC (area under receiver operating characteristic) which is a data mining tool for ranking classification models. The results would show great potential of applying AUROC for ranking MCDM methods in an immense selection problem with historical outcome","PeriodicalId":42560,"journal":{"name":"Journal of Investment Management","volume":"4 1","pages":"210"},"PeriodicalIF":0.7000,"publicationDate":"2015-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investment Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.JIM.20150405.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4
Abstract
One of the major challenges in decision making is selection among MCDM (multi criteria decision making) methods. These methods do not provide same answer to decision maker. Therefore selecting the best answer is an important dilemma. To solve this problem, methods like Borda and Copeland compilation have been proposed. However, applying these methods leads to a hybrid solution which is not necessarily the best answer. In this paper a new approach is proposed to rank different MCDM methods. This approach is AUROC (area under receiver operating characteristic) which is a data mining tool for ranking classification models. The results would show great potential of applying AUROC for ranking MCDM methods in an immense selection problem with historical outcome