L. Calvão, C. K. S. Paiva, J. Brito, A. Fares, Calebe Maia, T. Michelan, L. Montag, L. Juen
{"title":"Influence of biotic and abiotic factors on adult Odonata (Insecta) in Amazon streams","authors":"L. Calvão, C. K. S. Paiva, J. Brito, A. Fares, Calebe Maia, T. Michelan, L. Montag, L. Juen","doi":"10.1163/15707563-bja10047","DOIUrl":null,"url":null,"abstract":"Abiotic and biotic factors play an essential role in the structuring of natural communities. Aquatic ecosystems have complex interaction networks, encompassing predator/prey relationships and structural support. Among aquatic organisms, the order Odonata is a model group for understanding those relationships since they can be both predators and prey. Our hypotheses were that Zygoptera are (i) influenced positively by Ephemeroptera, Plecoptera and Trichoptera (EPT) and the Habitat Integrity Index (HII), and negatively by fish and macrophytes; and (ii) Anisoptera are affected positively by EPT and macrophytes, and negatively by fish and HII. We found that Zygoptera were affected by the fish functional trophic groups, while Anisoptera were affected by macrophytes, EPT, fish and HII. Macrophytes affected anisopterans positively because they provide perching sites for adults. The results for EPT and HII may be related since these organisms are also sensitive to environmental changes. More open areas have lower HII values and the negative relationship with Anisoptera may be explained by physiological constraints. The negative relationship between EPT and Anisoptera could be explained by the low occurrence of EPT in open sites, which are the sites that were highly rich in Anisoptera. Finally, the dominance of specific functional trophic groups of fish influences Odonata suborders in different ways. In conclusion, the results show the importance of ecological interactions for Odonata in Amazonian streams in both direct and indirect ways.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/15707563-bja10047","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15707563-bja10047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abiotic and biotic factors play an essential role in the structuring of natural communities. Aquatic ecosystems have complex interaction networks, encompassing predator/prey relationships and structural support. Among aquatic organisms, the order Odonata is a model group for understanding those relationships since they can be both predators and prey. Our hypotheses were that Zygoptera are (i) influenced positively by Ephemeroptera, Plecoptera and Trichoptera (EPT) and the Habitat Integrity Index (HII), and negatively by fish and macrophytes; and (ii) Anisoptera are affected positively by EPT and macrophytes, and negatively by fish and HII. We found that Zygoptera were affected by the fish functional trophic groups, while Anisoptera were affected by macrophytes, EPT, fish and HII. Macrophytes affected anisopterans positively because they provide perching sites for adults. The results for EPT and HII may be related since these organisms are also sensitive to environmental changes. More open areas have lower HII values and the negative relationship with Anisoptera may be explained by physiological constraints. The negative relationship between EPT and Anisoptera could be explained by the low occurrence of EPT in open sites, which are the sites that were highly rich in Anisoptera. Finally, the dominance of specific functional trophic groups of fish influences Odonata suborders in different ways. In conclusion, the results show the importance of ecological interactions for Odonata in Amazonian streams in both direct and indirect ways.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.