Microstructure Characteristics and Properties of HVOF Sprayed Ni-Based Alloy Nano-h-BN Self-Lubricating Composite Coatings

IF 1.5 Q3 ENGINEERING, MECHANICAL Advances in Tribology Pub Date : 2015-11-25 DOI:10.1155/2015/621278
Xiao-feng Zhang, Long Zhang, Z. Huang
{"title":"Microstructure Characteristics and Properties of HVOF Sprayed Ni-Based Alloy Nano-h-BN Self-Lubricating Composite Coatings","authors":"Xiao-feng Zhang, Long Zhang, Z. Huang","doi":"10.1155/2015/621278","DOIUrl":null,"url":null,"abstract":"A Ni-based alloy/nano-h-BN self-lubricating composite coating was produced on medium carbon steel by high velocity oxygen fuel (HVOF) spraying technique. The powder feedstocks for HVOF spraying were prepared by ball milling and agglomerated the nano-h-BN with Ni-based alloy powders. The microstructure and mechanical properties of coatings have been investigated. With the increasing of h-BN contents, some delaminations appeared gradually in the coatings and a continuous network with h-BN phase embedded formed in the metallic matrix. The average microhardness of the self-lubricating coating was a little lower for the addition of soft solid lubricant. The friction coefficient of coatings is in the ranges of 0.38–0.48 and 0.38–0.52 at ambient temperature and 400°C, respectively. The maximum bonding strength of coatings reached 23.83 MPa.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":"2015 1","pages":"1-6"},"PeriodicalIF":1.5000,"publicationDate":"2015-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/621278","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/621278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

A Ni-based alloy/nano-h-BN self-lubricating composite coating was produced on medium carbon steel by high velocity oxygen fuel (HVOF) spraying technique. The powder feedstocks for HVOF spraying were prepared by ball milling and agglomerated the nano-h-BN with Ni-based alloy powders. The microstructure and mechanical properties of coatings have been investigated. With the increasing of h-BN contents, some delaminations appeared gradually in the coatings and a continuous network with h-BN phase embedded formed in the metallic matrix. The average microhardness of the self-lubricating coating was a little lower for the addition of soft solid lubricant. The friction coefficient of coatings is in the ranges of 0.38–0.48 and 0.38–0.52 at ambient temperature and 400°C, respectively. The maximum bonding strength of coatings reached 23.83 MPa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HVOF喷涂ni基合金纳米h- bn自润滑复合涂层的组织特征与性能
采用高速氧燃料(HVOF)喷涂技术在中碳钢表面制备了ni基合金/纳米h- bn自润滑复合涂层。采用球磨法制备HVOF喷涂用粉末原料,用ni基合金粉末对纳米h- bn进行团聚。研究了涂层的显微组织和力学性能。随着h-BN含量的增加,涂层中逐渐出现脱层现象,在金属基体中形成h-BN相嵌入的连续网络。软固体润滑剂的加入使自润滑涂层的平均显微硬度略有降低。在室温和400℃时,涂层的摩擦系数分别为0.38 ~ 0.48和0.38 ~ 0.52。涂层的最大结合强度达到23.83 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Tribological and Mechanical Properties of Gradient Coating on Al2O3-Based Coating Produced by Detonation Spraying Methods Investigation on the Cutting Force and Surface Quality in Harmonically Vibrated Broaching (HVB) Influence of Spraying Parameters on the Structure and Tribological Properties of Cr3C2-NiCr Detonation Coatings Assessment of the Conventional Acid-Clay Method in Reclaiming Waste Crankcase Lubricating Oil Dynamic Processes of Self-Organization in Nonstationary Conditions of Friction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1