Experimental Evaluation of Erosion of Gunmetal under Asymmetrical Shaped Sand Particle

IF 1.5 Q3 ENGINEERING, MECHANICAL Advances in Tribology Pub Date : 2015-12-07 DOI:10.1155/2015/815179
M. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, M. Islam
{"title":"Experimental Evaluation of Erosion of Gunmetal under Asymmetrical Shaped Sand Particle","authors":"M. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, M. Islam","doi":"10.1155/2015/815179","DOIUrl":null,"url":null,"abstract":"The erosion characteristics of gunmetal have been evaluated practically at different operating conditions. Asymmetrical silica sand (SiO2) is taken into account as erodent within range of 300–600 μm. The impact velocity within 30–50 m/sec, impact angle 15–900, and stand off distance 15–25 mm are inspected as other relevant operating test conditions. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested gunmetal. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of gunmetal reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η), and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s and ANOVA concept. ratio indicates that there are 1.72% deviations that are estimated between predicted and experimental results. To elaborately analyze the results, ANN and GMDH methods are mentioned. After erosion process of tested composite, the damage propagation on surfaces is examined using SEM for the confirmation of possible nature of wear behavior. The elemental composition of eroded test samples at varying percentage of gunmetal is analyzed by EDX analysis.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/815179","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/815179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 17

Abstract

The erosion characteristics of gunmetal have been evaluated practically at different operating conditions. Asymmetrical silica sand (SiO2) is taken into account as erodent within range of 300–600 μm. The impact velocity within 30–50 m/sec, impact angle 15–900, and stand off distance 15–25 mm are inspected as other relevant operating test conditions. The maximum level of erosion is obtained at impact angle 15° which indicates the ductile manner of the tested gunmetal. The higher the impact velocity, the higher the erosion rate as almost linear fashion is observed. Mass loss of gunmetal reduces with the increase of stand-off distance. A dimensional analysis, erosion efficiency (η), and relationship between friction and erosion indicate the prominent correlation. The test results are designated using Taguchi’s and ANOVA concept. ratio indicates that there are 1.72% deviations that are estimated between predicted and experimental results. To elaborately analyze the results, ANN and GMDH methods are mentioned. After erosion process of tested composite, the damage propagation on surfaces is examined using SEM for the confirmation of possible nature of wear behavior. The elemental composition of eroded test samples at varying percentage of gunmetal is analyzed by EDX analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非对称型砂颗粒对枪械金属侵蚀的试验评价
在不同的操作条件下,对炮金属的侵蚀特性进行了实际评价。不对称硅砂(SiO2)在300 ~ 600 μm范围内被腐蚀。将冲击速度30 - 50m /秒,冲击角度15-900,离地距离15 - 25mm作为其他相关操作试验条件进行考察。在冲击角为15°时,得到了最大的侵蚀水平,这表明被测金属具有延展性。冲击速度越高,侵蚀速率越高,几乎呈线性变化。炮金属的质量损失随着离弹距离的增加而减小。量纲分析、冲蚀效率(η)和摩擦与冲蚀的关系表明,二者之间存在显著的相关性。测试结果使用田口和方差分析的概念来指定。比值表明,预测结果与实验结果之间估计偏差为1.72%。为了详细分析结果,本文提出了人工神经网络和GMDH方法。在被试复合材料的侵蚀过程后,利用扫描电镜对其表面的损伤扩展进行了研究,以确定其磨损行为的可能性质。用EDX分析方法分析了不同金属含量下侵蚀试样的元素组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Experimental Comparison of the Effect of Using Synthetic, Semi-Synthetic, and Mineral Engine Oil on Gasoline Engine Parts Wear A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels Mathematical Modeling of the Bearing Ratio Curve Rmr (50% Rz), through Investigation of the Effect of Process Parameters in Hard Turning of Steel C55 (DIN) with Mixed Ceramics MC2 (Al2O3 + TiC) Tribological and Mechanical Properties of Gradient Coating on Al2O3-Based Coating Produced by Detonation Spraying Methods Investigation on the Cutting Force and Surface Quality in Harmonically Vibrated Broaching (HVB)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1