{"title":"Thermodynamic Modeling of the Te-X (X = Gd, Dy, Ho) Binary Systems Combined with the First-Principles Method","authors":"Dongyu Cui, Jiong Wang, Jiaqiang Zhou","doi":"10.1007/s11669-023-01051-1","DOIUrl":null,"url":null,"abstract":"<div><p>Thermodynamic databases are essential to understanding alloy properties and guiding materials design. In this work, the mixing enthalpies of the liquid phase in the Gd-Te, Dy-Te and Ho-Te binary systems are calculated using Ab-initio Molecular Dynamics (AIMD) simulations and the thermodynamic parameters are determined using the CALculation of PHAse Diagrams (CALPHAD) method combined with the phase equilibrium data and thermodynamic data. The associated solution model is employed to describe the liquid phase of these systems. The sublattice model (Gd,Te)<sub>0.0296</sub>(Gd)<sub>0.4</sub>(Te)<sub>0.5714</sub>, (Dy,Te)<sub>0.0286</sub>(Dy)<sub>0.4286</sub>(Te)<sub>0.5714</sub> and (Ho,Te)<sub>0.5</sub>(Te)<sub>0.5</sub> are utilized to describe Gd<sub>2</sub>Te<sub>3</sub>, Dy<sub>2</sub>Te<sub>3</sub> and HoTe, respectively. The line compounds, i.e. GdTe, DyTe, and DyTe<sub>2</sub>, are modeled using the stoichiometric model. The calculated results can describe the experimental and thermodynamic information reported in the literature. In addition, the existence of a liquid-liquid separation in the Dy-rich side in the Dy-Te binary system is proposed in this work.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"44 3","pages":"456 - 467"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11669-023-01051-1.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-023-01051-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Thermodynamic databases are essential to understanding alloy properties and guiding materials design. In this work, the mixing enthalpies of the liquid phase in the Gd-Te, Dy-Te and Ho-Te binary systems are calculated using Ab-initio Molecular Dynamics (AIMD) simulations and the thermodynamic parameters are determined using the CALculation of PHAse Diagrams (CALPHAD) method combined with the phase equilibrium data and thermodynamic data. The associated solution model is employed to describe the liquid phase of these systems. The sublattice model (Gd,Te)0.0296(Gd)0.4(Te)0.5714, (Dy,Te)0.0286(Dy)0.4286(Te)0.5714 and (Ho,Te)0.5(Te)0.5 are utilized to describe Gd2Te3, Dy2Te3 and HoTe, respectively. The line compounds, i.e. GdTe, DyTe, and DyTe2, are modeled using the stoichiometric model. The calculated results can describe the experimental and thermodynamic information reported in the literature. In addition, the existence of a liquid-liquid separation in the Dy-rich side in the Dy-Te binary system is proposed in this work.
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.