Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2023-07-10 DOI:10.1021/acs.nanolett.3c01882
Xiaxia Cheng, Dongyi He, Man Zhou, Ping Zhang*, Shuting Wang*, Linlin Ren, Rong Sun and Xiaoliang Zeng*, 
{"title":"Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?","authors":"Xiaxia Cheng,&nbsp;Dongyi He,&nbsp;Man Zhou,&nbsp;Ping Zhang*,&nbsp;Shuting Wang*,&nbsp;Linlin Ren,&nbsp;Rong Sun and Xiaoliang Zeng*,&nbsp;","doi":"10.1021/acs.nanolett.3c01882","DOIUrl":null,"url":null,"abstract":"<p >Thermal resistance at a soft/hard material interface plays an undisputed role in the development of electronic packaging, sensors, and medicine. Adhesion energy and phonon spectra match are two crucial parameters in determining the interfacial thermal resistance (ITR), but it is difficult to simultaneously achieve these two parameters in one system to reduce the ITR at the soft/hard material interface. Here, we report a design of an elastomer composite consisting of a polyurethane–thioctic acid copolymer and microscale spherical aluminum, which exhibits both high phonon spectra match and high adhesion energy (&gt;1000 J/m<sup>2</sup>) with hard materials, thus leading to a low ITR of 0.03 mm<sup>2</sup>·K/W. We further develop a quantitative physically based model connecting the adhesion energy and ITR, revealing the key role the adhesion energy plays. This work serves to engineer the ITR at the soft/hard material interface from the aspect of adhesion energy, which will prompt a paradigm shift in the development of interface science.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 14","pages":"6673–6680"},"PeriodicalIF":9.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c01882","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Thermal resistance at a soft/hard material interface plays an undisputed role in the development of electronic packaging, sensors, and medicine. Adhesion energy and phonon spectra match are two crucial parameters in determining the interfacial thermal resistance (ITR), but it is difficult to simultaneously achieve these two parameters in one system to reduce the ITR at the soft/hard material interface. Here, we report a design of an elastomer composite consisting of a polyurethane–thioctic acid copolymer and microscale spherical aluminum, which exhibits both high phonon spectra match and high adhesion energy (>1000 J/m2) with hard materials, thus leading to a low ITR of 0.03 mm2·K/W. We further develop a quantitative physically based model connecting the adhesion energy and ITR, revealing the key role the adhesion energy plays. This work serves to engineer the ITR at the soft/hard material interface from the aspect of adhesion energy, which will prompt a paradigm shift in the development of interface science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘着能优化软/硬材料界面的界面热阻吗?
软/硬材料界面的热阻在电子封装、传感器和医学的发展中起着无可争议的作用。粘附能和声子谱匹配是决定界面热阻(ITR)的两个关键参数,但很难在一个体系中同时实现这两个参数以降低软/硬材料界面的ITR。在这里,我们报道了一种由聚氨酯-硫辛酸共聚物和微尺度球形铝组成的弹性体复合材料的设计,它具有高声子谱匹配和高粘附能(>1000 J/m2)与硬材料,从而导致低ITR为0.03 mm2·K/W。我们进一步建立了连接粘着能和ITR的定量物理模型,揭示了粘着能的关键作用。本研究从粘着能的角度对软硬材料界面的ITR进行了设计,这将促进界面科学发展的范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMn2O4 toward Long-Life Lithium-Ion Batteries Light vs Heat: Dissecting the De-intercalation in Photo-rechargeable Batteries Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries Crystallographic Customization of Zinc Anode for High Performance Aqueous Metal Batteries Selenium Interface Layers Boost High Mobility and Switch Ratios in van der Waals Electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1