Benoît Colange, L. Vuillon, S. Lespinats, D. Dutykh
{"title":"MING: An interpretative support method for visual exploration of multidimensional data","authors":"Benoît Colange, L. Vuillon, S. Lespinats, D. Dutykh","doi":"10.1177/14738716221079589","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction enables analysts to perform visual exploration of multidimensional data with a low-dimensional map retaining as much as possible of the original data structure. The interpretation of such a map relies on the hypothesis of preservation of neighborhood relations. Namely, distances in the map are assumed to reflect faithfully dissimilarities in the data space, as measured with a domain-related metric. Yet, in most cases, this hypothesis is undermined by distortions of those relations by the mapping process, which need to be accounted for during map interpretation. In this paper, we describe an interpretative support method called Map Interpretation using Neighborhood Graphs (MING) displaying individual neighborhood relations on the map, as edges of nearest neighbors graphs. The level of distortion of those relations is shown through coloring of the edges. This allows analysts to assess the reliability of similarity relations inferred from the map, while hinting at the original structure of data by showing the missing relations. Moreover, MING provides a local interpretation for classical map quality indicators, since the quantitative measure of distortions is based on those indicators. Overall, the proposed method alleviates the mapping-induced bias in interpretation while constantly reminding users that the map is not the data.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":"21 1","pages":"246 - 269"},"PeriodicalIF":1.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716221079589","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3
Abstract
Dimensionality reduction enables analysts to perform visual exploration of multidimensional data with a low-dimensional map retaining as much as possible of the original data structure. The interpretation of such a map relies on the hypothesis of preservation of neighborhood relations. Namely, distances in the map are assumed to reflect faithfully dissimilarities in the data space, as measured with a domain-related metric. Yet, in most cases, this hypothesis is undermined by distortions of those relations by the mapping process, which need to be accounted for during map interpretation. In this paper, we describe an interpretative support method called Map Interpretation using Neighborhood Graphs (MING) displaying individual neighborhood relations on the map, as edges of nearest neighbors graphs. The level of distortion of those relations is shown through coloring of the edges. This allows analysts to assess the reliability of similarity relations inferred from the map, while hinting at the original structure of data by showing the missing relations. Moreover, MING provides a local interpretation for classical map quality indicators, since the quantitative measure of distortions is based on those indicators. Overall, the proposed method alleviates the mapping-induced bias in interpretation while constantly reminding users that the map is not the data.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).