Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes.

Q2 Biochemistry, Genetics and Molecular Biology BMC Biochemistry Pub Date : 2016-06-29 DOI:10.1186/s12858-016-0068-7
Farooq Ahmad Kiani, Stefan Fischer
{"title":"Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes.","authors":"Farooq Ahmad Kiani, Stefan Fischer","doi":"10.1186/s12858-016-0068-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nucleoside triphosphate (NTP) hydrolysis is a key reaction in biology. It involves breaking two very stable bonds (one P-O bond and one O-H bond of water), in either a concurrent or a sequential way. Here, we systematically examine how protonation of the triphosphate affects the mechanism of hydrolysis.</p><p><strong>Results: </strong>The hydrolysis reaction of methyl triphosphate in vacuum is computed with protons in various numbers and position on the three phosphate groups. Protonation is seen to have a strong catalytic effect, with the reaction mechanism depending highly on the protonation pattern.</p><p><strong>Conclusion: </strong>This dependence is apparently complicated, but is shown to obey a well-defined set of rules: Protonation of the α- and β-phosphate groups favors a sequential hydrolysis mechanism, whereas γ-protonation favors a concurrent mechanism, the two effects competing with each other in cases of simultaneous protonation. The rate-limiting step is always the breakup of the water molecule while it attacks the γ-phosphorus, and its barrier is lowered by γ-protonation. This step has significantly lower barriers in the sequential reactions, because the dissociated γ-metaphosphate intermediate (P<sub>γ</sub>O<sub>3</sub><sup>-</sup>) is a much better target for water attack than the un-dissociated γ-phosphate (-P<sub>γ</sub>O<sub>4</sub><sup>2-</sup>). The simple chemical logic behind these rules helps to better understand the catalytic strategy used by NTPase enzymes, as illustrated here for the catalytic pocket of myosin. A set of rules was determined that describes how protonating the phosphate groups affects the hydrolysis mechanism of methyl triphosphate: Protonation of the α- and/or β- phosphate groups promotes a sequential mechanism in which P-O bond breaking precedes the breakup of the attacking water, whereas protonation of the γ-phosphate promotes a concurrent mechanism and lowers the rate-limiting barrier of water breakup. The role played by individual protein residues in the catalytic pocket of triphosphate hydrolysing enzymes can be assigned accordingly.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"17 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-016-0068-7","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-016-0068-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9

Abstract

Background: Nucleoside triphosphate (NTP) hydrolysis is a key reaction in biology. It involves breaking two very stable bonds (one P-O bond and one O-H bond of water), in either a concurrent or a sequential way. Here, we systematically examine how protonation of the triphosphate affects the mechanism of hydrolysis.

Results: The hydrolysis reaction of methyl triphosphate in vacuum is computed with protons in various numbers and position on the three phosphate groups. Protonation is seen to have a strong catalytic effect, with the reaction mechanism depending highly on the protonation pattern.

Conclusion: This dependence is apparently complicated, but is shown to obey a well-defined set of rules: Protonation of the α- and β-phosphate groups favors a sequential hydrolysis mechanism, whereas γ-protonation favors a concurrent mechanism, the two effects competing with each other in cases of simultaneous protonation. The rate-limiting step is always the breakup of the water molecule while it attacks the γ-phosphorus, and its barrier is lowered by γ-protonation. This step has significantly lower barriers in the sequential reactions, because the dissociated γ-metaphosphate intermediate (PγO3-) is a much better target for water attack than the un-dissociated γ-phosphate (-PγO42-). The simple chemical logic behind these rules helps to better understand the catalytic strategy used by NTPase enzymes, as illustrated here for the catalytic pocket of myosin. A set of rules was determined that describes how protonating the phosphate groups affects the hydrolysis mechanism of methyl triphosphate: Protonation of the α- and/or β- phosphate groups promotes a sequential mechanism in which P-O bond breaking precedes the breakup of the attacking water, whereas protonation of the γ-phosphate promotes a concurrent mechanism and lowers the rate-limiting barrier of water breakup. The role played by individual protein residues in the catalytic pocket of triphosphate hydrolysing enzymes can be assigned accordingly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子化对真空中三磷酸水解的影响及其对核苷酸水解酶催化作用的启示。
背景:三磷酸核苷(NTP)水解是生物学中的一个关键反应。它包括两个非常稳定的键(水的一个P-O键和一个O-H键),以同时或顺序的方式断开。在这里,我们系统地研究了三磷酸质子化如何影响水解机制。结果:利用三个磷酸基团上不同数目和位置的质子,计算了真空中三磷酸甲酯的水解反应。质子化被认为具有很强的催化作用,反应机制高度依赖于质子化模式。结论:这种依赖关系显然是复杂的,但却遵循一套明确的规则:α-和β-磷酸基团的质子化倾向于顺序水解机制,而γ-质子化倾向于并发机制,在同时质子化的情况下,这两种效应相互竞争。限制反应速率的步骤通常是水分子在攻击γ-磷时的分解,并通过γ-质子化降低其势垒。这一步在连续反应中具有明显较低的障碍,因为解离的γ-偏磷酸盐中间体(p - γ o3 -)比未解离的γ-磷酸盐(- p - γ o42 -)更容易受到水的攻击。这些规则背后的简单化学逻辑有助于更好地理解NTPase酶使用的催化策略,如这里所示的肌凝蛋白的催化口袋。确定了一组规则来描述磷酸基团的质子化如何影响甲基三磷酸的水解机制:α-和/或β-磷酸基团的质子化促进了一个顺序机制,其中P-O键断裂先于攻击水的分解,而γ-磷酸的质子化促进了一个并行机制,并降低了水分解的限速屏障。在三磷酸水解酶的催化口袋中,单个蛋白残基所起的作用可以相应地分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biochemistry
BMC Biochemistry BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.
期刊最新文献
Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. Association of TM6SF2 rs58542926 gene polymorphism with the risk of non-alcoholic fatty liver disease and colorectal adenoma in Chinese Han population. The active role of the transcription factor Sp1 in NFATc2-mediated gene regulation in pancreatic cancer. Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. Up-regulation of DcR3 in microbial toxins-stimulated HUVECs involves NF-κB signalling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1