{"title":"From random lines to metric spaces","authors":"W. Kendall","doi":"10.1214/14-AOP935","DOIUrl":null,"url":null,"abstract":"Consider an improper Poisson line process, marked by positive speeds so as to satisfy a scale-invariance property (actually, scale-equivariance). The line process can be characterized by its intensity measure, which belongs to a one-parameter family if scale and Euclidean invariance are required. This paper investigates a proposal by Aldous, namely that the line process could be used to produce a scale-invariant random spatial network (SIRSN) by means of connecting up points using paths which follow segments from the line process at the stipulated speeds. It is shown that this does indeed produce a scale-invariant network, under suitable conditions on the parameter; in fact, it then produces a parameter-dependent random geodesic metric for dd-dimensional space (d≥2d≥2), where geodesics are given by minimum-time paths. Moreover, in the planar case, it is shown that the resulting geodesic metric space has an almost everywhere unique-geodesic property that geodesics are locally of finite mean length, and that if an independent Poisson point process is connected up by such geodesics then the resulting network places finite length in each compact region. It is an open question whether the result is a SIRSN (in Aldous’ sense; so placing finite mean length in each compact region), but it may be called a pre-SIRSN.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/14-AOP935","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AOP935","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11
Abstract
Consider an improper Poisson line process, marked by positive speeds so as to satisfy a scale-invariance property (actually, scale-equivariance). The line process can be characterized by its intensity measure, which belongs to a one-parameter family if scale and Euclidean invariance are required. This paper investigates a proposal by Aldous, namely that the line process could be used to produce a scale-invariant random spatial network (SIRSN) by means of connecting up points using paths which follow segments from the line process at the stipulated speeds. It is shown that this does indeed produce a scale-invariant network, under suitable conditions on the parameter; in fact, it then produces a parameter-dependent random geodesic metric for dd-dimensional space (d≥2d≥2), where geodesics are given by minimum-time paths. Moreover, in the planar case, it is shown that the resulting geodesic metric space has an almost everywhere unique-geodesic property that geodesics are locally of finite mean length, and that if an independent Poisson point process is connected up by such geodesics then the resulting network places finite length in each compact region. It is an open question whether the result is a SIRSN (in Aldous’ sense; so placing finite mean length in each compact region), but it may be called a pre-SIRSN.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.