{"title":"Behavior of the generalized Rosenblatt process at extreme critical exponent values","authors":"Shuyang Bai, M. Taqqu","doi":"10.1214/15-AOP1087","DOIUrl":null,"url":null,"abstract":"The generalized Rosenblatt process is obtained by replacing the single critical exponent characterizing the Rosenblatt process by two different exponents living in the interior of a triangular region. What happens to that generalized Rosenblatt process as these critical exponents approach the boundaries of the triangle? We show by two different methods that on each of the two symmetric boundaries, the limit is non-Gaussian. On the third boundary, the limit is Brownian motion. The rates of convergence to these boundaries are also given. The situation is particularly delicate as one approaches the corners of the triangle, because the limit process will depend on how these corners are approached. All limits are in the sense of weak convergence in C[0,1]C[0,1]. These limits cannot be strengthened to convergence in L2(Ω)L2(Ω).","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2016-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1087","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1087","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 28
Abstract
The generalized Rosenblatt process is obtained by replacing the single critical exponent characterizing the Rosenblatt process by two different exponents living in the interior of a triangular region. What happens to that generalized Rosenblatt process as these critical exponents approach the boundaries of the triangle? We show by two different methods that on each of the two symmetric boundaries, the limit is non-Gaussian. On the third boundary, the limit is Brownian motion. The rates of convergence to these boundaries are also given. The situation is particularly delicate as one approaches the corners of the triangle, because the limit process will depend on how these corners are approached. All limits are in the sense of weak convergence in C[0,1]C[0,1]. These limits cannot be strengthened to convergence in L2(Ω)L2(Ω).
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.