{"title":"Recurrence and transience for the frog model on trees","authors":"C. Hoffman, Tobias Johnson, M. Junge","doi":"10.1214/16-AOP1125","DOIUrl":null,"url":null,"abstract":"The frog model is a growing system of random walks where a particle is added whenever a new site is visited. A longstanding open question is how often the root is visited on the infinite dd-ary tree. We prove the model undergoes a phase transition, finding it recurrent for d=2d=2 and transient for d≥5d≥5. Simulations suggest strong recurrence for d=2d=2, weak recurrence for d=3d=3, and transience for d≥4d≥4. Additionally, we prove a 0–1 law for all dd-ary trees, and we exhibit a graph on which a 0–1 law does not hold. To prove recurrence when d=2d=2, we construct a recursive distributional equation for the number of visits to the root in a smaller process and show the unique solution must be infinity a.s. The proof of transience when d=5d=5 relies on computer calculations for the transition probabilities of a large Markov chain. We also include the proof for d≥6d≥6, which uses similar techniques but does not require computer assistance.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/16-AOP1125","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AOP1125","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 61
Abstract
The frog model is a growing system of random walks where a particle is added whenever a new site is visited. A longstanding open question is how often the root is visited on the infinite dd-ary tree. We prove the model undergoes a phase transition, finding it recurrent for d=2d=2 and transient for d≥5d≥5. Simulations suggest strong recurrence for d=2d=2, weak recurrence for d=3d=3, and transience for d≥4d≥4. Additionally, we prove a 0–1 law for all dd-ary trees, and we exhibit a graph on which a 0–1 law does not hold. To prove recurrence when d=2d=2, we construct a recursive distributional equation for the number of visits to the root in a smaller process and show the unique solution must be infinity a.s. The proof of transience when d=5d=5 relies on computer calculations for the transition probabilities of a large Markov chain. We also include the proof for d≥6d≥6, which uses similar techniques but does not require computer assistance.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.