Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process.

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2021-01-01 DOI:10.1214/21-BA1269
S. Bacallado, S. Favaro, Samuel Power, L. Trippa
{"title":"Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process.","authors":"S. Bacallado, S. Favaro, Samuel Power, L. Trippa","doi":"10.1214/21-BA1269","DOIUrl":null,"url":null,"abstract":"The predictive probabilities of the hierarchical Pitman-Yor process are approximated through Monte Carlo algorithms that exploits the Chinese Restaurant Franchise (CRF) representation. However, in order to simulate the posterior distribution of the hierarchical Pitman-Yor process, a set of auxiliary variables representing the arrangement of customers in tables of the CRF must be sampled through Markov chain Monte Carlo. This paper develops a perfect sampler for these latent variables employing ideas from the Propp-Wilson algorithm and evaluates its average running time by extensive simulations. The simulations reveal a significant dependence of running time on the parameters of the model, which exhibits sharp transitions. The algorithm is compared to simpler Gibbs sampling procedures, as well as a procedure for unbiased Monte Carlo estimation proposed by Glynn and Rhee. We illustrate its use with an example in microbial genomics studies.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-BA1269","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

The predictive probabilities of the hierarchical Pitman-Yor process are approximated through Monte Carlo algorithms that exploits the Chinese Restaurant Franchise (CRF) representation. However, in order to simulate the posterior distribution of the hierarchical Pitman-Yor process, a set of auxiliary variables representing the arrangement of customers in tables of the CRF must be sampled through Markov chain Monte Carlo. This paper develops a perfect sampler for these latent variables employing ideas from the Propp-Wilson algorithm and evaluates its average running time by extensive simulations. The simulations reveal a significant dependence of running time on the parameters of the model, which exhibits sharp transitions. The algorithm is compared to simpler Gibbs sampling procedures, as well as a procedure for unbiased Monte Carlo estimation proposed by Glynn and Rhee. We illustrate its use with an example in microbial genomics studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分层Pitman-Yor过程中后验的完美抽样。
分层Pitman-Yor过程的预测概率通过蒙特卡罗算法进行近似,该算法利用中餐馆特许经营(CRF)表示。然而,为了模拟分层Pitman-Yor过程的后验分布,必须通过马尔可夫链蒙特卡罗对一组表示CRF表中客户排列的辅助变量进行采样。本文利用Propp-Wilson算法的思想开发了一种针对这些潜在变量的完美采样器,并通过大量的仿真评估了其平均运行时间。仿真结果表明,运行时间对模型参数有显著的依赖性,模型参数具有明显的过渡。该算法与更简单的Gibbs抽样程序以及由Glynn和Rhee提出的无偏蒙特卡罗估计程序进行了比较。我们用一个微生物基因组学研究的例子来说明它的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error. A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI. Posterior Shrinkage Towards Linear Subspaces Dynamic Functional Variable Selection for Multimodal mHealth Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1