Application of steel-concrete composite pile foundation system as energy storage medium

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL Structural Engineering and Mechanics Pub Date : 2021-01-01 DOI:10.12989/SEM.2021.77.6.753
A. Agibayeva, D. Lee, H. Ju, Dichuan Zhang, J. Kim
{"title":"Application of steel-concrete composite pile foundation system as energy storage medium","authors":"A. Agibayeva, D. Lee, H. Ju, Dichuan Zhang, J. Kim","doi":"10.12989/SEM.2021.77.6.753","DOIUrl":null,"url":null,"abstract":"Feasibility studies of a reinforced concrete (RC) deep pile foundation system with the compressed air energy storage (CAES) technology were conducted in previous studies. However, those studies showed some technical limitations in its serviceability and durability performances. To overcome such drawbacks of the conventional RC energy pile system, various steel-concrete composite pile foundations are addressed in this study to be utilized as a dual functional system for an energy storage medium and load-resistant foundation. This study conducts finite element analyses to examine the applicability of various composite energy pile foundation systems considering the combined effects of structural loading, soil boundary forces, and internal air pressures induced by the thermos-dynamic cycle of compressed air. On this basis, it was clearly confirmed that the role of inner and outer tubes is essential in terms of reliable storage tank and better constructability of pile, respectively, and the steel tubes in the composite pile foundation can also ensure improved serviceability and durability performances compared to the conventional RC pile system.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"753-763"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.77.6.753","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6

Abstract

Feasibility studies of a reinforced concrete (RC) deep pile foundation system with the compressed air energy storage (CAES) technology were conducted in previous studies. However, those studies showed some technical limitations in its serviceability and durability performances. To overcome such drawbacks of the conventional RC energy pile system, various steel-concrete composite pile foundations are addressed in this study to be utilized as a dual functional system for an energy storage medium and load-resistant foundation. This study conducts finite element analyses to examine the applicability of various composite energy pile foundation systems considering the combined effects of structural loading, soil boundary forces, and internal air pressures induced by the thermos-dynamic cycle of compressed air. On this basis, it was clearly confirmed that the role of inner and outer tubes is essential in terms of reliable storage tank and better constructability of pile, respectively, and the steel tubes in the composite pile foundation can also ensure improved serviceability and durability performances compared to the conventional RC pile system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢-混凝土复合桩基础体系作为储能介质的应用
在以往的研究中,对钢筋混凝土(RC)深桩基础系统进行了压缩空气储能(CAES)技术可行性研究。然而,这些研究表明,其适用性和耐久性性能存在一些技术局限性。为了克服传统钢筋混凝土能量桩体系的这些缺陷,本文研究了多种钢-混凝土复合桩基础,将其作为储能介质和抗荷载基础的双重功能体系。考虑结构荷载、土体边界力和压缩空气热力循环引起的内部空气压力的综合作用,本文通过有限元分析来检验各种复合能源桩基础体系的适用性。在此基础上,明确了内管和外管分别在可靠的贮槽和更好的桩可施工性方面的作用,并且复合桩基础中的钢管也比常规RC桩体系具有更高的使用性能和耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
期刊最新文献
Neonatal Onset Distal Renal Tubular Acidosis: Description of Two Novel Variants on the ATP6V0A4 Gene and Review of the Literature on Associated Extrarenal Manifestations. Approach to the Patient: Management of Pituitary Hormone Replacement Through Transition. Seismic performance of exterior r/c beam-column joint under varying axial force A model for investigating vehicle-bridge interaction under high moving speed A simplified method for free vibration analysis of wall-frames considering soil structure interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1