Simulation of different carbon structures on significant mechanical and physical properties based on MDs method

IF 2.2 4区 工程技术 Q2 ENGINEERING, CIVIL Structural Engineering and Mechanics Pub Date : 2021-01-01 DOI:10.12989/SEM.2021.78.6.691
Ashkan Farazin, M. Mohammadimehr, Amirabbas Ghorbanpour-Arani
{"title":"Simulation of different carbon structures on significant mechanical and physical properties based on MDs method","authors":"Ashkan Farazin, M. Mohammadimehr, Amirabbas Ghorbanpour-Arani","doi":"10.12989/SEM.2021.78.6.691","DOIUrl":null,"url":null,"abstract":"In this research, the nanocomposite boxes are simulated using polyurethane (PU) as a thermoplastic polymer with various reinforcements including carbon nanoparticles (CNPs), graphene platelets (GPLs), single-walled carbon nanotubes (SWCNTs), and double-walled carbon nanotubes (DWCNTs), which are as biocompatible and biodegradable. To predict the mechanical and physical properties of each nanocomposite boxes, the molecular dynamics (MDs) method with Materials studio software has been applied. Ultimately, all properties including mechanical and physical properties (Young's modulus, shear modulus, bulk modulus and Poisson's ratio of nanocomposite from CNPs to DWCNTs approximately becomes 5.7, 10.25, 28.63, 96 and 1.39 times, respectively. Then, the stiffness matrix are obtained by Materials studio software. Moreover, the obtained results from this research are validated with the results of the literature. Also, the mechanical and physical properties of nanocomposite are recommended before fabrication. The manufacturing of this nanocomposite is used for biomedical cases such as artificial vessels and piping.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.78.6.691","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

In this research, the nanocomposite boxes are simulated using polyurethane (PU) as a thermoplastic polymer with various reinforcements including carbon nanoparticles (CNPs), graphene platelets (GPLs), single-walled carbon nanotubes (SWCNTs), and double-walled carbon nanotubes (DWCNTs), which are as biocompatible and biodegradable. To predict the mechanical and physical properties of each nanocomposite boxes, the molecular dynamics (MDs) method with Materials studio software has been applied. Ultimately, all properties including mechanical and physical properties (Young's modulus, shear modulus, bulk modulus and Poisson's ratio of nanocomposite from CNPs to DWCNTs approximately becomes 5.7, 10.25, 28.63, 96 and 1.39 times, respectively. Then, the stiffness matrix are obtained by Materials studio software. Moreover, the obtained results from this research are validated with the results of the literature. Also, the mechanical and physical properties of nanocomposite are recommended before fabrication. The manufacturing of this nanocomposite is used for biomedical cases such as artificial vessels and piping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MDs方法模拟不同碳结构的重要力学和物理性能
在本研究中,采用聚氨酯(PU)作为热塑性聚合物,并添加各种增强剂,包括碳纳米颗粒(CNPs)、石墨烯片(GPLs)、单壁碳纳米管(SWCNTs)和双壁碳纳米管(DWCNTs),模拟了纳米复合材料箱,这些增强剂具有生物相容性和可生物降解性。为了预测每个纳米复合材料盒子的力学和物理性能,应用了Materials studio软件中的分子动力学(MDs)方法。最终,CNPs / DWCNTs纳米复合材料的力学和物理性能(杨氏模量、剪切模量、体积模量和泊松比)分别约为5.7倍、10.25倍、28.63倍、96倍和1.39倍。然后,通过Materials studio软件得到刚度矩阵。并且,本研究得到的结果与文献的结果进行了验证。同时,介绍了制备前纳米复合材料的力学和物理性能。这种纳米复合材料的制造用于生物医学领域,如人造血管和管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structural Engineering and Mechanics
Structural Engineering and Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
18.20%
发文量
0
审稿时长
11 months
期刊介绍: The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation. The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include: - Structural Mechanics - Design of Civil, Building and Mechanical Structures - Structural Optimization and Controls - Structural Safety and Reliability - New Structural Materials and Applications - Effects of Wind, Earthquake and Wave Loadings on Structures - Fluid-Structure and Soil-Structure Interactions - AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.
期刊最新文献
Seismic performance of exterior r/c beam-column joint under varying axial force A model for investigating vehicle-bridge interaction under high moving speed A simplified method for free vibration analysis of wall-frames considering soil structure interaction Damage detection in structures using modal curvatures gapped smoothing method and deep learning Thermal frequency analysis of FG sandwich structure under variable temperature loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1