{"title":"Edge-clamped two-way slabs containing low-ductility steel","authors":"Z. Sakka, R. Gilbert","doi":"10.12989/SEM.2021.78.6.731","DOIUrl":null,"url":null,"abstract":"This paper describes a series of full range load tests on two-way, edge-clamped reinforced concrete slab panels containing either Class L WWF or Class N deformed bars. Five rectangular slab panels were tested each with two adjacent fully restrained edges and two free edges. A point support was included under the corner of each panel at the intersection of the two free edges. Each slab specimen was loaded by four transverse loads applied symmetrically in the mid-panel region by a deformation-controlled actuator in a stiff testing frame. The continuous edge supports were provided by clamping two adjacent edges in a carefully designed and constructed testing frame. The slabs were instrumented with load cells to measure applied forces and reactions, strain gauges to measure strain in the steel reinforcement and on the concrete surfaces, linear variable displacement transducers and lasers to measure deflections at all stages of loading. The results of the tests are presented and evaluated, with particular emphasis on the strength, ductility and failure mode of the slabs.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"78 1","pages":"731"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.78.6.731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a series of full range load tests on two-way, edge-clamped reinforced concrete slab panels containing either Class L WWF or Class N deformed bars. Five rectangular slab panels were tested each with two adjacent fully restrained edges and two free edges. A point support was included under the corner of each panel at the intersection of the two free edges. Each slab specimen was loaded by four transverse loads applied symmetrically in the mid-panel region by a deformation-controlled actuator in a stiff testing frame. The continuous edge supports were provided by clamping two adjacent edges in a carefully designed and constructed testing frame. The slabs were instrumented with load cells to measure applied forces and reactions, strain gauges to measure strain in the steel reinforcement and on the concrete surfaces, linear variable displacement transducers and lasers to measure deflections at all stages of loading. The results of the tests are presented and evaluated, with particular emphasis on the strength, ductility and failure mode of the slabs.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.