{"title":"Modal parameter estimation of civil structures based onimproved variational mode decomposition","authors":"L. Zhi, Feng Hu, Chunfeng Zhao, Jingfeng Wang","doi":"10.12989/SEM.2021.79.6.683","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved variational mode decomposition (IVMD) algorithm for structural modal parameter estimation based on non-stationary responses. In this improved VMD, the mean envelope entropy (MEE) and particle swarm optimization (PSO) are first employed to determine the optimal decomposition parameters for the subsequent VMD analysis. Then the VMD algorithm is used to decompose the non-stationary data into a number of intrinsic mode functions (IMFs). After obtaining the IMFs based on the IVMD, structural modal parameters such as natural frequencies and damping ratios of civil structures can be determined by using Natural Excitation Technique (NExT) and Direct Interpolating approach (DI). The feasibility and accuracy of the proposed procedure are evaluated by both numerical and full-scale examples. The natural frequencies and damping ratios are successfully identified from the vibration responses with high noise and nonstationary characteristics. The results of this study illustrate that the proposed procedure provides a powerful approach to identify the modal parameters of civil structures using non-stationary responses.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"683"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Engineering and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SEM.2021.79.6.683","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes an improved variational mode decomposition (IVMD) algorithm for structural modal parameter estimation based on non-stationary responses. In this improved VMD, the mean envelope entropy (MEE) and particle swarm optimization (PSO) are first employed to determine the optimal decomposition parameters for the subsequent VMD analysis. Then the VMD algorithm is used to decompose the non-stationary data into a number of intrinsic mode functions (IMFs). After obtaining the IMFs based on the IVMD, structural modal parameters such as natural frequencies and damping ratios of civil structures can be determined by using Natural Excitation Technique (NExT) and Direct Interpolating approach (DI). The feasibility and accuracy of the proposed procedure are evaluated by both numerical and full-scale examples. The natural frequencies and damping ratios are successfully identified from the vibration responses with high noise and nonstationary characteristics. The results of this study illustrate that the proposed procedure provides a powerful approach to identify the modal parameters of civil structures using non-stationary responses.
期刊介绍:
The STRUCTURAL ENGINEERING AND MECHANICS, An International Journal, aims at: providing a major publication channel for structural engineering, wider distribution at more affordable subscription rates; faster reviewing and publication for manuscripts submitted; and a broad scope for wider participation.
The main subject of the Journal is structural engineering concerned with aspects of mechanics. Areas covered by the Journal include:
- Structural Mechanics
- Design of Civil, Building and Mechanical Structures
- Structural Optimization and Controls
- Structural Safety and Reliability
- New Structural Materials and Applications
- Effects of Wind, Earthquake and Wave Loadings on Structures
- Fluid-Structure and Soil-Structure Interactions
- AI Application and Expert Systems in Structural Engineering. Submission of papers from practicing engineers is particularly encouraged.