Numerical Prediction of Contact Line Dynamics on Super-Hydrophobic Surfaces

Ashwin Ramesh, S. Diwakar, Sarit K. Das
{"title":"Numerical Prediction of Contact Line Dynamics on Super-Hydrophobic Surfaces","authors":"Ashwin Ramesh, S. Diwakar, Sarit K. Das","doi":"10.1260/1759-3093.2.1.99","DOIUrl":null,"url":null,"abstract":"The current study numerically investigates the motion of droplets on a surface with a micro cavity using the Volume of Fluid (VOF) technique. The simulation is a precursor to droplet motion on super-hydrophobic surfaces which is the focus of surface engineering research in recent times. The advancing and receding contact angles are tracked as a droplet moves on a single cavity which can be seen as the space between two posts of a typical engineered super-hydrophobic surface. Stick-jump-slip behavior can be seen during the advancing motion of the drop and the reverse is seen during the receding motion. The contact angle evolution is studied for three different post geometries and it is concluded that wider post spacing leads to smaller dynamic contact angles. This study is important from the point of prediction of dynamic contact angles computationally on super-hydrophobic surfaces.","PeriodicalId":89942,"journal":{"name":"International journal of micro-nano scale transport","volume":"2 1","pages":"99-108"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1260/1759-3093.2.1.99","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of micro-nano scale transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3093.2.1.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study numerically investigates the motion of droplets on a surface with a micro cavity using the Volume of Fluid (VOF) technique. The simulation is a precursor to droplet motion on super-hydrophobic surfaces which is the focus of surface engineering research in recent times. The advancing and receding contact angles are tracked as a droplet moves on a single cavity which can be seen as the space between two posts of a typical engineered super-hydrophobic surface. Stick-jump-slip behavior can be seen during the advancing motion of the drop and the reverse is seen during the receding motion. The contact angle evolution is studied for three different post geometries and it is concluded that wider post spacing leads to smaller dynamic contact angles. This study is important from the point of prediction of dynamic contact angles computationally on super-hydrophobic surfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超疏水表面接触线动力学的数值预测
本文利用流体体积(VOF)技术对微腔表面上液滴的运动进行了数值研究。超疏水表面上的液滴运动是近年来表面工程研究的热点。当液滴在单个空腔上移动时,可以将其视为典型的工程超疏水表面的两根柱子之间的空间,从而跟踪其前进和后退的接触角。在下降的前进运动中可以看到粘跳滑移行为,而在后退运动中可以看到相反的情况。研究了三种不同柱间距下的动态接触角演化规律,得出柱间距越宽,动态接触角越小的结论。该研究对超疏水表面动态接触角的计算预测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaporation of a Sessile Microdroplet on a Heated Hydrophobic Substrate Characterization of Thermal Transport in Carbon Nanotube Yarns Subsurface Tumor Ablation with Near-infrared Radiation using Intratumoral and Intravenous Injection of Nanoparticles Characterization of Gamma-irradiated Carbon Nanotube and Metallic Foil Thermal Interface Materials for Space Systems Experimental and Numerical Investigation of Forced Convection Heat Transfer in Rectangular Microchannels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1