Optimization of Ethanol Reforming with micro-channels in Plate type reformer configuration

S. Roychowdhury, P. Vivekanand, Sarit K. Das, T. Sundararajan
{"title":"Optimization of Ethanol Reforming with micro-channels in Plate type reformer configuration","authors":"S. Roychowdhury, P. Vivekanand, Sarit K. Das, T. Sundararajan","doi":"10.1260/1759-3093.5.3.147","DOIUrl":null,"url":null,"abstract":"The study of steam reforming of ethanol in micro-channels in a plate-type reformer has been carried out to understand the fluid mechanics, heat transfer and kinetics of ethanol conversion to hydrogen for fuel-cell applications. Heat exchange between alternate channels of combustion flue gas and steam-ethanol mixture has been considered, involving co-flow or counter-flow configurations. Combustion reactions are observed to be completed close to the entry. This results in higher rates of conversion for the co-flow configuration, owing to higher heat transfer rates at the entry. It is shown that end effects are felt only in the outer-most channels and hence a symmetric reformer channel analysis is adequate to predict the performance of a multi-channel reformer system. In the axial direction, the flow, temperature and concentration fields attain fully developed profile form at a short distance from the inlet. At larger axial distances, the velocity profile undergoes mild variations due to changes in the gas d...","PeriodicalId":89942,"journal":{"name":"International journal of micro-nano scale transport","volume":"5 1","pages":"147-165"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of micro-nano scale transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3093.5.3.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The study of steam reforming of ethanol in micro-channels in a plate-type reformer has been carried out to understand the fluid mechanics, heat transfer and kinetics of ethanol conversion to hydrogen for fuel-cell applications. Heat exchange between alternate channels of combustion flue gas and steam-ethanol mixture has been considered, involving co-flow or counter-flow configurations. Combustion reactions are observed to be completed close to the entry. This results in higher rates of conversion for the co-flow configuration, owing to higher heat transfer rates at the entry. It is shown that end effects are felt only in the outer-most channels and hence a symmetric reformer channel analysis is adequate to predict the performance of a multi-channel reformer system. In the axial direction, the flow, temperature and concentration fields attain fully developed profile form at a short distance from the inlet. At larger axial distances, the velocity profile undergoes mild variations due to changes in the gas d...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平板式重整器构型中微通道乙醇重整的优化
为了解乙醇转化为燃料电池用氢的流体力学、传热和动力学,研究了乙醇在板式重整器微通道中的蒸汽重整过程。考虑了燃烧烟气和蒸汽-乙醇混合物交替通道之间的热交换,包括共流或逆流配置。燃烧反应在接近入口时完成。这导致了更高的转化率为共流配置,由于更高的传热率在入口。结果表明,末端效应仅在最外层的通道中才会出现,因此对称的重整器通道分析足以预测多通道重整器系统的性能。在轴向上,气流场、温度场和浓度场在离进口较近的地方达到充分发育的廓形。在较大的轴向距离上,由于气体密度的变化,速度剖面发生了轻微的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaporation of a Sessile Microdroplet on a Heated Hydrophobic Substrate Characterization of Thermal Transport in Carbon Nanotube Yarns Subsurface Tumor Ablation with Near-infrared Radiation using Intratumoral and Intravenous Injection of Nanoparticles Characterization of Gamma-irradiated Carbon Nanotube and Metallic Foil Thermal Interface Materials for Space Systems Experimental and Numerical Investigation of Forced Convection Heat Transfer in Rectangular Microchannels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1