Jon-Lark Kim, D. Ohk, Doo Young Park, Jae Woo Park
{"title":"Recent results on Choi's orthogonal Latin squares","authors":"Jon-Lark Kim, D. Ohk, Doo Young Park, Jae Woo Park","doi":"10.13069/jacodesmath.1056511","DOIUrl":null,"url":null,"abstract":"Choi Seok-Jeong studied Latin squares at least 60 years earlier than Euler although this was less known. He introduced a pair of orthogonal Latin squares of order 9 in his book. Interestingly, his two orthogonal non-double-diagonal Latin squares produce a magic square of order 9, whose theoretical reason was not studied. There have been a few studies on Choi’s Latin squares of order 9. The most recent one is Ko-Wei Lih’s construction of Choi’s Latin squares of order 9 based on the two 3ˆ3 orthogonal Latin squares. In this paper, we give a new generalization of Choi’s orthogonal Latin squares of order 9 to orthogonal Latin squares of size n2 using the Kronecker product including Lih’s construction. We find a geometric description of Choi’s orthogonal Latin squares of order 9 using the dihedral group D8. We also give a new way to construct magic squares from two orthogonal non-double-diagonal Latin squares, which explains why Choi’s Latin squares produce a magic square of order 9.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.1056511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Choi Seok-Jeong studied Latin squares at least 60 years earlier than Euler although this was less known. He introduced a pair of orthogonal Latin squares of order 9 in his book. Interestingly, his two orthogonal non-double-diagonal Latin squares produce a magic square of order 9, whose theoretical reason was not studied. There have been a few studies on Choi’s Latin squares of order 9. The most recent one is Ko-Wei Lih’s construction of Choi’s Latin squares of order 9 based on the two 3ˆ3 orthogonal Latin squares. In this paper, we give a new generalization of Choi’s orthogonal Latin squares of order 9 to orthogonal Latin squares of size n2 using the Kronecker product including Lih’s construction. We find a geometric description of Choi’s orthogonal Latin squares of order 9 using the dihedral group D8. We also give a new way to construct magic squares from two orthogonal non-double-diagonal Latin squares, which explains why Choi’s Latin squares produce a magic square of order 9.