Biomechanical analysis of the mechanical environment of the cell nucleus in serum starvation-induced vascular smooth muscle cell differentiation

K. Nagayama
{"title":"Biomechanical analysis of the mechanical environment of the cell nucleus in serum starvation-induced vascular smooth muscle cell differentiation","authors":"K. Nagayama","doi":"10.1299/jbse.19-00364","DOIUrl":null,"url":null,"abstract":"Vascular smooth muscle cells (VSMCs) actively remodel the arterial walls through biomechanical signals and dedifferentiate from the contractile to the synthetic phenotype under pathological conditions. It is important to elucidate the mechanism underlying phenotypic transition of VSMCs for understanding their role in the pathophysiology of disease and for developing engineered tissues. Although numerous studies have reported various biochemical or biomechanical factors that stimulate the phenotypic transition of VSMCs, very little is known about the changes in the mechanical environment of intracellular nucleus that are involved in various cellular functions. This study investigated the changes in the force exerted on the intracellular nucleus, and their morphology and mechanical properties during serum starvation-induced VSMC differentiation. Fluorescent microscopy image analysis and atomic force microscopy nano-indentation live cell imaging revealed that the serum-starvation culture conditions markedly promote the contractile differentiation of VSMCs with F-actin stabilization and reduces the internal force exerted on the nucleus. The nuclei in these contractile VSMCs exhibited surface stiffening and matured nuclear lamina. Additionally, the nuclei exhibited distinct surface dimples along the actin stress fibers even though these nuclei were exposed to lower internal forces. These results indicate that the distinct dimples on the nuclear surfaces represent a plastic remodeling of the nucleus under the serum-starvation culture conditions. The nuclear stiffening, local deformation, and plastic remodeling observed in this study may be important factors in contractile differentiation of VSMCs.","PeriodicalId":39034,"journal":{"name":"Journal of Biomechanical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1299/jbse.19-00364","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jbse.19-00364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

Vascular smooth muscle cells (VSMCs) actively remodel the arterial walls through biomechanical signals and dedifferentiate from the contractile to the synthetic phenotype under pathological conditions. It is important to elucidate the mechanism underlying phenotypic transition of VSMCs for understanding their role in the pathophysiology of disease and for developing engineered tissues. Although numerous studies have reported various biochemical or biomechanical factors that stimulate the phenotypic transition of VSMCs, very little is known about the changes in the mechanical environment of intracellular nucleus that are involved in various cellular functions. This study investigated the changes in the force exerted on the intracellular nucleus, and their morphology and mechanical properties during serum starvation-induced VSMC differentiation. Fluorescent microscopy image analysis and atomic force microscopy nano-indentation live cell imaging revealed that the serum-starvation culture conditions markedly promote the contractile differentiation of VSMCs with F-actin stabilization and reduces the internal force exerted on the nucleus. The nuclei in these contractile VSMCs exhibited surface stiffening and matured nuclear lamina. Additionally, the nuclei exhibited distinct surface dimples along the actin stress fibers even though these nuclei were exposed to lower internal forces. These results indicate that the distinct dimples on the nuclear surfaces represent a plastic remodeling of the nucleus under the serum-starvation culture conditions. The nuclear stiffening, local deformation, and plastic remodeling observed in this study may be important factors in contractile differentiation of VSMCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血清饥饿诱导血管平滑肌细胞分化过程中细胞核力学环境的生物力学分析
血管平滑肌细胞(VSMCs)通过生物力学信号主动重塑动脉壁,在病理条件下由收缩型向合成型去分化。阐明VSMCs表型转变的机制对于了解其在疾病病理生理和工程组织发育中的作用具有重要意义。尽管大量研究报道了多种生物化学或生物力学因素刺激VSMCs表型转变,但对参与各种细胞功能的细胞核内机械环境的变化知之甚少。本研究研究了血清饥饿诱导的VSMC分化过程中对细胞核施加的力及其形态和力学性质的变化。荧光显微镜图像分析和原子力显微镜纳米压痕活细胞成像显示,血清饥饿培养条件显著促进具有f -肌动蛋白稳定的VSMCs的收缩分化,并降低施加在细胞核上的内力。在这些收缩的VSMCs中,细胞核表现出表面硬化和成熟的核层。此外,细胞核沿肌动蛋白应力纤维表现出明显的表面凹陷,即使这些细胞核暴露在较低的内力下。这些结果表明,在血清饥饿培养条件下,细胞核表面明显的凹陷代表了细胞核的塑性重塑。本研究中观察到的核硬化、局部变形和塑性重塑可能是VSMCs收缩分化的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomechanical Science and Engineering
Journal of Biomechanical Science and Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
18
期刊最新文献
Synergistic effects of heating and traction during fibrous tissue elongation Postural stabilization effect of neck pillow during short-term rest in sitting position in an office chair with medium-height backrest Prediction of post-embolization recurrence in internal carotid-posterior communicating aneurysms with Vel-PointNet Monocular camera-based 3D human body pose estimation by Generative Adversarial Network considering joint range of motion represented by quaternion Superficial groove structure in the size of focal adhesion can clarify cell-type-specific differences in force-dependent substrate mechanosensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1