A six-degree-of-freedom proportional-derivative control strategy for bumblebee flight stabilization

Xuefei Cai, Hao Liu
{"title":"A six-degree-of-freedom proportional-derivative control strategy for bumblebee flight stabilization","authors":"Xuefei Cai, Hao Liu","doi":"10.1299/JBSE.21-00113","DOIUrl":null,"url":null,"abstract":"Flying insects perform active flight control with flapping wings by continuously adjusting their wing kinematics in stabilizing the body posture to stay aloft under complex natural environment. While the Proportional Derivative (PD) / Proportional Integral Derivative (PID)-based algorithms have been applied to examine specific single degree of freedom (DoF) and/or 3 DoF flight control associated with insect flights, a full 6 DoF flight control strategy remains yet poorly studied. Here we propose a novel 6 DoF PD controller specified for flight stabilization in flapping flights, in which proportional and derivative gains are optimized to facilitate a fast while precise flight control by combing Laplace transformation and root locus method. The vertical position, yaw, pitch and roll are directly stabilized by tuning the wing kinematics while the forward/backward position and lateral position are indirectly stabilized by controlling the pitch and roll, respectively. Coupled with a recently developed flight dynamic model informed by high-fidelity CFD simulation (Cai et al. 2021), this methodology is proven to be effective as a versatile and efficient tool to achieve fast flight stabilization under both small and large perturbations for bumblebee hovering. The 6 DoF PD flight control strategy proposed may provide a useful bioinspired flight-controller design for flapping-wing micro air vehicles (FWMAVs).","PeriodicalId":39034,"journal":{"name":"Journal of Biomechanical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JBSE.21-00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Flying insects perform active flight control with flapping wings by continuously adjusting their wing kinematics in stabilizing the body posture to stay aloft under complex natural environment. While the Proportional Derivative (PD) / Proportional Integral Derivative (PID)-based algorithms have been applied to examine specific single degree of freedom (DoF) and/or 3 DoF flight control associated with insect flights, a full 6 DoF flight control strategy remains yet poorly studied. Here we propose a novel 6 DoF PD controller specified for flight stabilization in flapping flights, in which proportional and derivative gains are optimized to facilitate a fast while precise flight control by combing Laplace transformation and root locus method. The vertical position, yaw, pitch and roll are directly stabilized by tuning the wing kinematics while the forward/backward position and lateral position are indirectly stabilized by controlling the pitch and roll, respectively. Coupled with a recently developed flight dynamic model informed by high-fidelity CFD simulation (Cai et al. 2021), this methodology is proven to be effective as a versatile and efficient tool to achieve fast flight stabilization under both small and large perturbations for bumblebee hovering. The 6 DoF PD flight control strategy proposed may provide a useful bioinspired flight-controller design for flapping-wing micro air vehicles (FWMAVs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大黄蜂飞行稳定的六自由度比例导数控制策略
在复杂的自然环境下,飞虫通过扇动翅膀,不断调整翅膀的运动来实现主动飞行控制,稳定身体姿态,保持在高空。虽然基于比例导数(PD) /比例积分导数(PID)的算法已经应用于研究与昆虫飞行相关的特定单自由度(DoF)和/或3自由度飞行控制,但对完整的6自由度飞行控制策略的研究仍然很少。本文提出了一种用于扑翼飞行稳定的新型6自由度PD控制器,该控制器通过结合拉普拉斯变换和根轨迹法对比例增益和导数增益进行优化,实现了快速而精确的飞行控制。垂直位置、偏航、俯仰和滚转通过调整机翼运动学直接稳定,前后位置和侧向位置分别通过控制俯仰和滚转间接稳定。结合最近开发的高保真CFD模拟的飞行动力学模型(Cai et al. 2021),该方法被证明是一种多功能和高效的工具,可以在大黄蜂悬停的小扰动和大扰动下实现快速飞行稳定。所提出的六自由度PD飞行控制策略可为扑翼微型飞行器(FWMAVs)提供一种实用的仿生飞行控制器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomechanical Science and Engineering
Journal of Biomechanical Science and Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
18
期刊最新文献
Synergistic effects of heating and traction during fibrous tissue elongation Postural stabilization effect of neck pillow during short-term rest in sitting position in an office chair with medium-height backrest Prediction of post-embolization recurrence in internal carotid-posterior communicating aneurysms with Vel-PointNet Monocular camera-based 3D human body pose estimation by Generative Adversarial Network considering joint range of motion represented by quaternion Superficial groove structure in the size of focal adhesion can clarify cell-type-specific differences in force-dependent substrate mechanosensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1