Superiority of 1-kestose, the Smallest Fructo-oligosaccharide, to a Synthetic Mixture of Fructo-oligosaccharides in the Selective Stimulating Activity on Bifidobacteria
Nobuyuki Suzuki, Y. Aiba, H. Takeda, Y. Fukumori, Y. Koga
{"title":"Superiority of 1-kestose, the Smallest Fructo-oligosaccharide, to a Synthetic Mixture of Fructo-oligosaccharides in the Selective Stimulating Activity on Bifidobacteria","authors":"Nobuyuki Suzuki, Y. Aiba, H. Takeda, Y. Fukumori, Y. Koga","doi":"10.12938/BIFIDUS.25.109","DOIUrl":null,"url":null,"abstract":"A synthetic mixture of fructo-oligosaccharides (mFOS), consisting largely of nystose (GF 3 ) and a lesser amount of 1-kestose (GF 2 ) has been reported to be selectively utilized by bifidobacteria. In the present study, we tried to identify which fructo-oligosaccharide molecule in mFOS is really involved in the stimulation of bifidobacteria in the gut, using both the gnotobiotic murine model and in vitro culture. 1-Kestose administration to gnotobiotic mice that were associated with human fecal microbiota significantly increased the number of bifidobacteria while mFOS administration was unable to sustain bifidobacteria in these hosts. Moreover a simultaneous decrease in the number of clostridia was found in host mice administered 1-kestose but not in those administered mFOS. The acetate/ propionate ratio in the feces was far higher in host mice administered 1-kestose than in those administered mFOS, suggesting the selective growth activation of bifidobacteria by 1-kestose. The culture study demonstrated that 1-kestose exerts a strong growth-stimulating activity on bifidobacteria but a negligible one on clostridia. On the other hand, nystose was able to stimulate clostridia if the clostridia were exposed to nystose for some time. These results suggest the superiority of 1-kestose to mFOS, which consists largely of nystose, in the selective stimulating activity on bifidobacteria.","PeriodicalId":90114,"journal":{"name":"Bioscience and microflora","volume":"25 1","pages":"109-116"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12938/BIFIDUS.25.109","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience and microflora","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12938/BIFIDUS.25.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
A synthetic mixture of fructo-oligosaccharides (mFOS), consisting largely of nystose (GF 3 ) and a lesser amount of 1-kestose (GF 2 ) has been reported to be selectively utilized by bifidobacteria. In the present study, we tried to identify which fructo-oligosaccharide molecule in mFOS is really involved in the stimulation of bifidobacteria in the gut, using both the gnotobiotic murine model and in vitro culture. 1-Kestose administration to gnotobiotic mice that were associated with human fecal microbiota significantly increased the number of bifidobacteria while mFOS administration was unable to sustain bifidobacteria in these hosts. Moreover a simultaneous decrease in the number of clostridia was found in host mice administered 1-kestose but not in those administered mFOS. The acetate/ propionate ratio in the feces was far higher in host mice administered 1-kestose than in those administered mFOS, suggesting the selective growth activation of bifidobacteria by 1-kestose. The culture study demonstrated that 1-kestose exerts a strong growth-stimulating activity on bifidobacteria but a negligible one on clostridia. On the other hand, nystose was able to stimulate clostridia if the clostridia were exposed to nystose for some time. These results suggest the superiority of 1-kestose to mFOS, which consists largely of nystose, in the selective stimulating activity on bifidobacteria.