Heat transfer enhancement and torque reduction by traveling wave-like blowing and suction in turbulent Taylor-Couette flow

IF 1.2 4区 工程技术 Q3 THERMODYNAMICS Journal of Thermal Science and Technology Pub Date : 2021-01-01 DOI:10.1299/jtst.2021jtst0003
H. Mamori, K. Fukudome, K. Ogino, N. Fukushima, M. Yamamoto
{"title":"Heat transfer enhancement and torque reduction by traveling wave-like blowing and suction in turbulent Taylor-Couette flow","authors":"H. Mamori, K. Fukudome, K. Ogino, N. Fukushima, M. Yamamoto","doi":"10.1299/jtst.2021jtst0003","DOIUrl":null,"url":null,"abstract":"Direct numerical simulations of turbulent Taylor–Couette flows are performed to investigate the effect of a traveling wave control on torque and heat transfer. In the Taylor–Couette flow, inner and outer cylinders are rotating and immobile, respectively, and the temperature difference between cylinder walls is maintained as constant. The ratio between the inner and outer cylinder is 0.882, and the Reynolds number is set as 84,000. A traveling wave-like blowing and suction is imposed on an inner cylinder wall. A parametric study shows the effect of control parameters on torque and heat transfer. We focused on three characteristic parameter sets: heat transfer enhancement, relaminarization phenomenon, and simultaneous achievement of torque reduction and heat transfer enhancement. We employed identity equations by using three-component decomposition to clarify contributions from advection, turbulence, and diffusion on torque and Stanton number. The results indicated that the traveling wave control affects the turbulence and advection contributions.","PeriodicalId":17405,"journal":{"name":"Journal of Thermal Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1299/jtst.2021jtst0003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 4

Abstract

Direct numerical simulations of turbulent Taylor–Couette flows are performed to investigate the effect of a traveling wave control on torque and heat transfer. In the Taylor–Couette flow, inner and outer cylinders are rotating and immobile, respectively, and the temperature difference between cylinder walls is maintained as constant. The ratio between the inner and outer cylinder is 0.882, and the Reynolds number is set as 84,000. A traveling wave-like blowing and suction is imposed on an inner cylinder wall. A parametric study shows the effect of control parameters on torque and heat transfer. We focused on three characteristic parameter sets: heat transfer enhancement, relaminarization phenomenon, and simultaneous achievement of torque reduction and heat transfer enhancement. We employed identity equations by using three-component decomposition to clarify contributions from advection, turbulence, and diffusion on torque and Stanton number. The results indicated that the traveling wave control affects the turbulence and advection contributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湍流Taylor-Couette流中行波式吹吸增强传热和减小扭矩
本文对Taylor-Couette紊流进行了直接数值模拟,研究了行波控制对转矩和传热的影响。在Taylor-Couette流动中,内、外气缸分别处于旋转状态和不动状态,气缸壁面温差保持恒定。内筒与外筒之比为0.882,雷诺数设为84,000。在气缸内壁施加行波式吹吸作用。参数化研究表明了控制参数对转矩和传热的影响。我们重点研究了三个特征参数集:传热增强、再层化现象以及同时实现扭矩减小和传热增强。我们利用三组分分解的恒等方程来阐明平流、湍流和扩散对扭矩和斯坦顿数的贡献。结果表明,行波控制影响湍流和平流的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
0
审稿时长
5 months
期刊介绍: JTST covers a variety of fields in thermal engineering including heat and mass transfer, thermodynamics, combustion, bio-heat transfer, micro- and macro-scale transport phenomena and practical thermal problems in industrial applications.
期刊最新文献
Development of a process for thin metal plates with electromagnetic pressure and surface tension Validation of Soave–Redlich–Kwong equation of state coupled with a classical mixing rule for sound speed of non-ideal gas mixture of oxygen-hydrogen as liquid rocket propellants Molecular dynamics simulation of energy transfer in reaction process near supported nanoparticle catalyst Improvement of isothermal characteristic of isothermal chamber by filling with graded copper foam Combined effects of diesel energy ratio and diesel injection nozzle diameter on natural gas high pressure direct injection engine with EGR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1