The effect of pile cap stiffness on the seismic response ofsoil-pile-structure systems under near-fault ground motions

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Earthquakes and Structures Pub Date : 2021-01-01 DOI:10.12989/EAS.2021.20.1.087
S. Abbasi, A. Ardakani, M. Yakhchalian
{"title":"The effect of pile cap stiffness on the seismic response ofsoil-pile-structure systems under near-fault ground motions","authors":"S. Abbasi, A. Ardakani, M. Yakhchalian","doi":"10.12989/EAS.2021.20.1.087","DOIUrl":null,"url":null,"abstract":"Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.1.087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近断层地震动作用下,承台刚度对土-桩-结构体系地震反应的影响
在近断层位置记录的地面运动,在那里破裂向该地点传播,与在远断层区域观察到的明显不同。本文采用有限元方法研究了近断层地震动作用下桩承台刚度对土-桩-结构体系地震响应的影响。采用具有粒间应变概念的Von Wolffersdorff欠塑性模型对颗粒土(砂)进行建模,认为其结构行为是非线性的。将记录在岩石上的8条断层正态近场地震动记录应用于该模型。将所建立的数值计算方法与某桩-土-结构体系的振动台试验结果进行了对比验证。近断层地震动有限元模拟结果表明,随着承台刚度值的增大,结构的漂移比减小,桩的相对位移增大。此外,桩内残余变形是由桩周土体的非线性行为引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquakes and Structures
Earthquakes and Structures ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
2.90
自引率
20.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response
期刊最新文献
Seismic behaviour of dams to near fault and far fault ground motions: A state of the art review Mathematical model and results for seismicresponses of a nonlinear isolation system Base-isolated steel structure with spring limitersunder near-fault earthquakes: Experiment Seismic performance assessment of code-conforming precast reinforced concrete frames in China Seismic Site Classification from HVSR Data using the Rayleigh wave ellipticity inversion: A case study in Singapore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1