Three-dimensional finite element analysis of urban rock tunnel under static loading condition: Effect of the rock weathering

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL Geomechanics and Engineering Pub Date : 2021-01-01 DOI:10.12989/GAE.2021.25.2.099
Mohammad Zaid
{"title":"Three-dimensional finite element analysis of urban rock tunnel under static loading condition: Effect of the rock weathering","authors":"Mohammad Zaid","doi":"10.12989/GAE.2021.25.2.099","DOIUrl":null,"url":null,"abstract":"Tunnel provide faster, safer and convenient way of transportation for different objects. The region where it is construction and surrounding medium has significant influence on the overall stability and performance of tunnel. The present simulation has been carried out in order to understand the behaviour of rock tunnel under static loading condition. The present numerical model has been validated with the laboratory scaled model and field data of underground tunnels. Both lined and unlined tunnels have been considered in this paper. Finite element technique has been considered for the simulation of static loading effect on tunnel through Abaqus/Standard. The Mohr-Coulomb material model has been considered to simulate elastoplastic nonlinear behaviour of different rock types, i.e., Basalt, Granite and Quartzite. The four different stages of rock weathering are classified as fresh, slightly, moderately, and highly weathered in case of each rock type. Moreover, extremely weathered stage has been considered in case of Quartzite rock. It has been concluded that weathering of rock and overburden depth has great influence on the tunnel stability. However, by considering a particular weathering stage of rock for each rock type shows varying patterns of deformations in tunnel.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":"25 1","pages":"99-109"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.25.2.099","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 11

Abstract

Tunnel provide faster, safer and convenient way of transportation for different objects. The region where it is construction and surrounding medium has significant influence on the overall stability and performance of tunnel. The present simulation has been carried out in order to understand the behaviour of rock tunnel under static loading condition. The present numerical model has been validated with the laboratory scaled model and field data of underground tunnels. Both lined and unlined tunnels have been considered in this paper. Finite element technique has been considered for the simulation of static loading effect on tunnel through Abaqus/Standard. The Mohr-Coulomb material model has been considered to simulate elastoplastic nonlinear behaviour of different rock types, i.e., Basalt, Granite and Quartzite. The four different stages of rock weathering are classified as fresh, slightly, moderately, and highly weathered in case of each rock type. Moreover, extremely weathered stage has been considered in case of Quartzite rock. It has been concluded that weathering of rock and overburden depth has great influence on the tunnel stability. However, by considering a particular weathering stage of rock for each rock type shows varying patterns of deformations in tunnel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静载条件下城市岩石隧道三维有限元分析:岩石风化的影响
隧道为不同的物体提供了更快、更安全、更方便的运输方式。施工区域和周围介质对隧道的整体稳定性和性能有重要影响。本文的模拟是为了了解岩石隧道在静荷载作用下的受力特性。本文的数值模型已通过室内比例尺模型和地下隧道实测数据进行了验证。本文考虑了有衬砌隧道和无衬砌隧道。利用Abaqus/Standard软件,采用有限元技术对隧道静力荷载效应进行模拟。采用Mohr-Coulomb材料模型来模拟玄武岩、花岗岩和石英岩等不同岩石类型的弹塑性非线性行为。岩石风化的四个不同阶段分为新鲜、轻度、中度和高度风化。此外,石英岩还考虑了极端风化阶段。研究表明,岩石风化和覆盖层深度对隧道稳定性影响较大。然而,考虑到岩石的特定风化阶段,每种岩石类型在隧道中显示出不同的变形模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
期刊最新文献
An analytical approach to estimate the mechanical state of roof strata in underground longwall mining Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation Evaluation of grout penetration in single rock fracture using electrical resistivity Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction A novel preloading method for foundation underpinning for the remodeling of an existing building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1