Seismic earth pressure on embankment gravity retaining wall with nonuniform slope

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL Geomechanics and Engineering Pub Date : 2021-01-01 DOI:10.12989/GAE.2021.26.5.415
Hong-lue Qu, Deng Yuanyuan, Qindi Hu, H. Xue, Wang Chenxu
{"title":"Seismic earth pressure on embankment gravity retaining wall with nonuniform slope","authors":"Hong-lue Qu, Deng Yuanyuan, Qindi Hu, H. Xue, Wang Chenxu","doi":"10.12989/GAE.2021.26.5.415","DOIUrl":null,"url":null,"abstract":"According to the results of a survey of retaining structures damaged by the Wenchuan earthquake, the damage to gravity retaining walls accounted for 97.1% of the total damage to retaining walls. Among gravity retaining structures, embankment gravity retaining walls with nonuniform slopes are more prone to be disturbed under seismic conditions. However, relatively few studies have been performed to calculate the seismic earth pressure on such structures. In this study, a simplified approach is presented to calculate the seismic earth pressure on embankment gravity retaining walls with nonuniform slopes. In the proposed approach, the equations are derived based on the primary assumptions of the Mononobe–Okabe theory and the limit equilibrium state of the quadrilateral slip soil wedge. To verify the applicability of the proposed approach, a large-scale shaking-table test was conducted to obtain the distribution of the seismic earth pressure, the magnitude of earth pressure resultant force, the resultant force action point, and slip surface of an embankment gravity retaining wall with a nonuniform slope, under various peak ground accelerations. A comparison indicates that the calculated results were in agreement with the experimental results, implying that the proposed approach is valid for calculating the seismic earth pressure on embankment gravity retaining walls with nonuniform slopes.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":"26 1","pages":"415"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.26.5.415","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

Abstract

According to the results of a survey of retaining structures damaged by the Wenchuan earthquake, the damage to gravity retaining walls accounted for 97.1% of the total damage to retaining walls. Among gravity retaining structures, embankment gravity retaining walls with nonuniform slopes are more prone to be disturbed under seismic conditions. However, relatively few studies have been performed to calculate the seismic earth pressure on such structures. In this study, a simplified approach is presented to calculate the seismic earth pressure on embankment gravity retaining walls with nonuniform slopes. In the proposed approach, the equations are derived based on the primary assumptions of the Mononobe–Okabe theory and the limit equilibrium state of the quadrilateral slip soil wedge. To verify the applicability of the proposed approach, a large-scale shaking-table test was conducted to obtain the distribution of the seismic earth pressure, the magnitude of earth pressure resultant force, the resultant force action point, and slip surface of an embankment gravity retaining wall with a nonuniform slope, under various peak ground accelerations. A comparison indicates that the calculated results were in agreement with the experimental results, implying that the proposed approach is valid for calculating the seismic earth pressure on embankment gravity retaining walls with nonuniform slopes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非均匀边坡路堤重力挡土墙地震土压力研究
根据对汶川地震破坏的挡土墙结构的调查结果,重力式挡土墙的破坏占挡土墙总破坏的97.1%。在重力挡土墙结构中,边坡不均匀的路堤重力挡土墙在地震作用下更容易受到扰动。然而,计算此类结构的地震土压力的研究相对较少。本文提出了一种计算非均匀边坡路堤重力挡土墙地震土压力的简化方法。在该方法中,基于Mononobe-Okabe理论的基本假设和四边形滑坡体的极限平衡状态推导出了方程。为验证该方法的适用性,进行了大型振动台试验,得到了不同峰值地面加速度作用下非均匀坡度路堤重力挡土墙的地震土压力分布、土压力合力大小、合力作用点及滑移面。计算结果与试验结果吻合较好,表明本文方法对非均匀坡度路堤重力挡土墙地震土压力计算是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
期刊最新文献
An analytical approach to estimate the mechanical state of roof strata in underground longwall mining Investigating of free vibration behavior of bidirectional FG beams resting on variable elastic foundation Evaluation of grout penetration in single rock fracture using electrical resistivity Study on lateral behavior of digging well foundation with consideration of soil-foundation interaction A novel preloading method for foundation underpinning for the remodeling of an existing building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1