Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification

Roman Huptas
{"title":"Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification","authors":"Roman Huptas","doi":"10.12775/DEM.2009.013","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to outline the typical characteristics of the ultra-high-frequency financial data and to present estimation methods of intraday seasonality of trading activity. Ultra-high-frequency financial data (transactions data or tick-by-tick data) is defined to be a full record of transactions and their associated characteristics. We consider two nonparametric estimation methods: cubic splines and a Nadaraya-Watson kernel estimator of regression. Both approaches are compared empirically and applied to financial data of stocks traded at the Warsaw Stock Exchange.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"9 1","pages":"129-138"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2009.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of this paper is to outline the typical characteristics of the ultra-high-frequency financial data and to present estimation methods of intraday seasonality of trading activity. Ultra-high-frequency financial data (transactions data or tick-by-tick data) is defined to be a full record of transactions and their associated characteristics. We consider two nonparametric estimation methods: cubic splines and a Nadaraya-Watson kernel estimator of regression. Both approaches are compared empirically and applied to financial data of stocks traded at the Warsaw Stock Exchange.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超高频财务数据分析中的日内季节性:模型及其实证验证
本文的目的是概述超高频金融数据的典型特征,并提出交易活动盘中季节性的估计方法。超高频金融数据(交易数据或逐点数据)被定义为交易及其相关特征的完整记录。我们考虑了两种非参数估计方法:三次样条和回归的Nadaraya-Watson核估计。这两种方法进行了实证比较,并应用于在华沙证券交易所交易的股票的财务数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
Energy Consumption and Economic Growth in Ethiopia: Evidence from ARDL Bound Test Approach Demonetisation as an Economic Policy Tool: Macroeconomic Implications of a Monetary Market Shock. The Example of the Indian Monetary Reform Impact of Export and Import on Economic Growth: Time Series Evidence from India Revisiting the Import Demand Function: A Comparative Analysis Impact of the Sector and of Internal Factors on Profitability of the Companies Listed on the Warsaw Stock Exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1