Density forecasts based on disaggregate data: nowcasting Polish inflation

Błażej Mazur
{"title":"Density forecasts based on disaggregate data: nowcasting Polish inflation","authors":"Błażej Mazur","doi":"10.12775/DEM.2015.004","DOIUrl":null,"url":null,"abstract":"The paper investigates gains in performance of density forecasts from models using disaggregate data when forecasting aggregate series. The problem is considered within a restricted VAR framework with alternative sets of exclusion restrictions. Empirical analysis of Polish CPI m-o-m inflation rate (using its 14 sub-categories for disaggregate modelling) is presented. Exclusion restrictions are shown to improve density forecasting performance (as evaluated using log-score and CRPS criteria) relatively to aggregate and also disaggregate unrestricted models.","PeriodicalId":31914,"journal":{"name":"Dynamic Econometric Models","volume":"15 1","pages":"71-87"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Econometric Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/DEM.2015.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper investigates gains in performance of density forecasts from models using disaggregate data when forecasting aggregate series. The problem is considered within a restricted VAR framework with alternative sets of exclusion restrictions. Empirical analysis of Polish CPI m-o-m inflation rate (using its 14 sub-categories for disaggregate modelling) is presented. Exclusion restrictions are shown to improve density forecasting performance (as evaluated using log-score and CRPS criteria) relatively to aggregate and also disaggregate unrestricted models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分类数据的密度预测:临近预测波兰通货膨胀
本文研究了使用非聚合数据的模型在预测聚合序列时密度预测性能的提高。该问题是在具有备选排除限制集的受限VAR框架内考虑的。提出了波兰CPI m-o-m通货膨胀率的实证分析(使用其14个子类别进行分类建模)。排除限制被证明可以提高密度预测性能(如使用log-score和CRPS标准进行评估),相对于聚合和非聚合不受限制的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
Energy Consumption and Economic Growth in Ethiopia: Evidence from ARDL Bound Test Approach Demonetisation as an Economic Policy Tool: Macroeconomic Implications of a Monetary Market Shock. The Example of the Indian Monetary Reform Impact of Export and Import on Economic Growth: Time Series Evidence from India Revisiting the Import Demand Function: A Comparative Analysis Impact of the Sector and of Internal Factors on Profitability of the Companies Listed on the Warsaw Stock Exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1