{"title":"Numerical study on the deflections of steel-concrete composite beams with partial interaction","authors":"E. Mirambell, J. Bonilla, L. M. Bezerra, B. Cléro","doi":"10.12989/SCS.2021.38.1.067","DOIUrl":null,"url":null,"abstract":"The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"67-78"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.1.067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.