Numerical study on the deflections of steel-concrete composite beams with partial interaction

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Steel and Composite Structures Pub Date : 2021-01-01 DOI:10.12989/SCS.2021.38.1.067
E. Mirambell, J. Bonilla, L. M. Bezerra, B. Cléro
{"title":"Numerical study on the deflections of steel-concrete composite beams with partial interaction","authors":"E. Mirambell, J. Bonilla, L. M. Bezerra, B. Cléro","doi":"10.12989/SCS.2021.38.1.067","DOIUrl":null,"url":null,"abstract":"The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"67-78"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.1.067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分相互作用下钢-混凝土组合梁挠度的数值研究
使用部分相互作用的组合梁,比完全相互作用所需的剪力连接件少,在许多情况下可能是有利的。然而,与充分相互作用的梁相比,这些梁往往表现出更高的挠度,并且这种挠度计算的编纂表达式尚未得到充分的发展和验证。因此,本文对部分相互作用下钢-混凝土组合梁的挠度进行了全面的数值研究。利用先进的ABAQUS软件建立了考虑材料非线性和部件间接触的全尺寸组合梁的有效数值模型,包括模拟混凝土板的损伤模型。有限元模型与试验结果进行了对比验证,并开展了参数化研究,探讨了剪切连接度和摩擦系数对组合梁挠度的影响。采用参考规范(AISC、Eurocode-4和AS-2327.1)预测的挠度与数值结果的比较表明,根据分析的一些规范,挠度估计在验证服役极限状态时仍然存在不准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
期刊最新文献
Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. Study on the mechanism of the vortex-induced vibration ofa bluff double-side box section New composite flooring system for the circular economy Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1