Optimum location of second outrigger in RC core walls subjected toNF earthquakes

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Steel and Composite Structures Pub Date : 2021-01-01 DOI:10.12989/SCS.2021.38.6.671
H. Beiraghi, M. Hedayati
{"title":"Optimum location of second outrigger in RC core walls subjected toNF earthquakes","authors":"H. Beiraghi, M. Hedayati","doi":"10.12989/SCS.2021.38.6.671","DOIUrl":null,"url":null,"abstract":"Seismic responses of RC core wall with two outriggers are investigated in this study. In the models analyzed here, one of the outriggers is fixed at the top of the building and the second is placed at different levels along the height of the system. Each of the systems resulting from the placement of the outrigger at different locations is designed according to the prescriptive codes. The location of the outrigger changes along the height. Linear design of all the structures is accomplished by using prescriptive codes. Buckling restrained braces (BRBs) are used in the outriggers and forward directivity near fault and far fault earthquake record sets are used at maximum considered earthquake (MCE) level. Results from nonlinear time history analysis demonstrate that BRB outriggers can change the seismic responses like force distribution and deformation demand of the RC core-walls over the height and lead to the new plastic hinge arrangement over the core-wall height. Plasticity extension in the RC core wall occurs at the base as well as adjacent to the outrigger levels. Considering the maximum inter-story drift ratio (IDR) demand as an engineering parameter, the best location for the second outrigger is at 0.75H, in which the maximum IDR at the region upper the second outrigger level is approximately equal to the corresponding value in the lower region.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"671"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.6.671","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Seismic responses of RC core wall with two outriggers are investigated in this study. In the models analyzed here, one of the outriggers is fixed at the top of the building and the second is placed at different levels along the height of the system. Each of the systems resulting from the placement of the outrigger at different locations is designed according to the prescriptive codes. The location of the outrigger changes along the height. Linear design of all the structures is accomplished by using prescriptive codes. Buckling restrained braces (BRBs) are used in the outriggers and forward directivity near fault and far fault earthquake record sets are used at maximum considered earthquake (MCE) level. Results from nonlinear time history analysis demonstrate that BRB outriggers can change the seismic responses like force distribution and deformation demand of the RC core-walls over the height and lead to the new plastic hinge arrangement over the core-wall height. Plasticity extension in the RC core wall occurs at the base as well as adjacent to the outrigger levels. Considering the maximum inter-story drift ratio (IDR) demand as an engineering parameter, the best location for the second outrigger is at 0.75H, in which the maximum IDR at the region upper the second outrigger level is approximately equal to the corresponding value in the lower region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震作用下钢筋混凝土核心墙第二支腿的最佳位置
本文研究了带有两个伸出臂的RC核心墙的地震反应。在这里分析的模型中,一个支腿固定在建筑物的顶部,另一个支腿沿着系统的高度放置在不同的水平上。在不同位置放置支腿所产生的每个系统都是根据规范设计的。支腿的位置沿高度变化。所有结构的线性设计都是通过规范来完成的。外伸臂采用屈曲约束支撑(brb),最大考虑地震(MCE)级别采用近断层和远断层正向指向性地震记录集。非线性时程分析结果表明,BRB伸出臂可以改变RC核心墙在高度上的力分布和变形需求等地震反应,从而导致新的核心墙高度上的塑性铰布置。RC核心墙的塑性扩展发生在基础以及支腿水平附近。考虑最大层间漂移比(IDR)需求作为工程参数,第二支臂的最佳位置为0.75H,其中第二支臂上部区域的最大IDR近似等于下部区域的相应值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
期刊最新文献
Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. Study on the mechanism of the vortex-induced vibration ofa bluff double-side box section New composite flooring system for the circular economy Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1