Experimental investigation on the seismic performance of cored moment resisting stub columns

IF 4 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Steel and Composite Structures Pub Date : 2021-01-01 DOI:10.12989/SCS.2021.39.4.353
P. Hsiao, Kun-Sian Lin
{"title":"Experimental investigation on the seismic performance of cored moment resisting stub columns","authors":"P. Hsiao, Kun-Sian Lin","doi":"10.12989/SCS.2021.39.4.353","DOIUrl":null,"url":null,"abstract":"Cored moment resisting stub column (CMSC) was previously developed by the features of adopting a core segment which remains mostly elastic and reduced column section (RCS) details around the ends to from a stable hysteretic behavior with large post-yield stiffness and considerable ductility. Several full-scale CMSC components with various length proportions of the RCSs with respect to overall lengths have been experimentally investigated through both far-field and near-fault cyclic loadings followed by fatigue tests. Test results verified that the proposed CMSC provided very ductile hysteretic responses with no strength degradation even beyond the occurrence of the local buckling at the side-segments. The effect of RCS lengths on the seismic performance of the CMSC was verified to relate with the levels of the deformation concentration at the member ends, the local buckling behavior and overall ductility. Estimation equations were established to notionally calculate the first-yield and ultimate strengths of the CMSC and validated by the measured responses. A numerical model of the CMSC was developed to accurately capture the hysteretic performance of the specimens, and was adopted to clarify the effect of the surrounding frame and to perform a parametric study to develop the estimation of the elastic stiffness.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"7 1","pages":"353"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.39.4.353","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cored moment resisting stub column (CMSC) was previously developed by the features of adopting a core segment which remains mostly elastic and reduced column section (RCS) details around the ends to from a stable hysteretic behavior with large post-yield stiffness and considerable ductility. Several full-scale CMSC components with various length proportions of the RCSs with respect to overall lengths have been experimentally investigated through both far-field and near-fault cyclic loadings followed by fatigue tests. Test results verified that the proposed CMSC provided very ductile hysteretic responses with no strength degradation even beyond the occurrence of the local buckling at the side-segments. The effect of RCS lengths on the seismic performance of the CMSC was verified to relate with the levels of the deformation concentration at the member ends, the local buckling behavior and overall ductility. Estimation equations were established to notionally calculate the first-yield and ultimate strengths of the CMSC and validated by the measured responses. A numerical model of the CMSC was developed to accurately capture the hysteretic performance of the specimens, and was adopted to clarify the effect of the surrounding frame and to perform a parametric study to develop the estimation of the elastic stiffness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有芯抗弯矩短柱抗震性能试验研究
核心抗弯矩短柱(CMSC)之前的特点是采用核心段,其大部分保持弹性,并在末端周围采用缩减柱截面(RCS)细节,以保持稳定的滞回行为,具有较大的屈服后刚度和可观的延性。通过远场和近故障循环加载以及疲劳测试,研究了几种具有不同rcs长度比例的全尺寸CMSC部件。试验结果证实,CMSC提供了非常延展性的迟滞响应,即使在侧段发生局部屈曲时也没有强度退化。验证了RCS长度对CMSC抗震性能的影响与构件端部变形集中程度、局部屈曲行为和整体延性有关。建立了估算方程,从理论上计算了CMSC的首次屈服强度和极限强度,并通过实测响应进行了验证。为了准确地捕捉试件的滞回性能,建立了CMSC的数值模型,并采用该模型澄清了周围框架的影响,并进行了参数化研究,以建立弹性刚度的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Steel and Composite Structures
Steel and Composite Structures 工程技术-材料科学:复合
CiteScore
8.50
自引率
19.60%
发文量
0
审稿时长
7.5 months
期刊介绍: Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods. The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.
期刊最新文献
Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. Study on the mechanism of the vortex-induced vibration ofa bluff double-side box section New composite flooring system for the circular economy Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1