{"title":"Seismic behaviour of enlarged cross steel-reinforced concrete columns under various loadings","authors":"Peng Wang, Q. Shi, F. Wang, Q. Wang","doi":"10.12989/SCS.2021.40.1.033","DOIUrl":null,"url":null,"abstract":"Based on finite element software, a simulation programme is used to evaluate the seismic behaviour of new-type steel-reinforced concrete (SRC) columns, called enlarged cross steel-reinforced concrete (ECSRC) columns. With abundant simulations, the effects of the loading paths, number of loading cycles, incremental amplitude of displacement and variable axial load on the seismic response of the ECSRC columns were investigated. The results indicate that the seismic behaviour of the column is highly dependent on the loading paths, and it was observed that the loading paths produced a significant effect on the hysteretic response of the columns. Compared with those under uniaxial loading, the yield load, maximum load, ultimate displacement and ductility coefficient of the ECSRC columns under biaxial loading are reduced by 13.47%, 18.01%, 12.17% and 32.64%, respectively. The energy dissipation capacity of the columns is highly dependent on the loading paths. The skeleton curves are not significantly influenced by the number of loading cycles until the yield point of steel and longitudinal reinforcement is reached. With an increase in loading cycles, the yield load, yield displacement, ductility coefficient and maximum load, as well as the corresponding horizontal displacement of the column, are reduced, while the energy dissipation grows. In addition, the yield displacement, yield load, and ductility coefficient increase with an increase in the incremental amplitude of displacement; however, the energy dissipation decreases under these conditions. The seismic performance of the SRC column under variable axial loads clearly exhibits asymmetry that is worse than that observed under constant axial loads.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"40 1","pages":"33-43"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.40.1.033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Based on finite element software, a simulation programme is used to evaluate the seismic behaviour of new-type steel-reinforced concrete (SRC) columns, called enlarged cross steel-reinforced concrete (ECSRC) columns. With abundant simulations, the effects of the loading paths, number of loading cycles, incremental amplitude of displacement and variable axial load on the seismic response of the ECSRC columns were investigated. The results indicate that the seismic behaviour of the column is highly dependent on the loading paths, and it was observed that the loading paths produced a significant effect on the hysteretic response of the columns. Compared with those under uniaxial loading, the yield load, maximum load, ultimate displacement and ductility coefficient of the ECSRC columns under biaxial loading are reduced by 13.47%, 18.01%, 12.17% and 32.64%, respectively. The energy dissipation capacity of the columns is highly dependent on the loading paths. The skeleton curves are not significantly influenced by the number of loading cycles until the yield point of steel and longitudinal reinforcement is reached. With an increase in loading cycles, the yield load, yield displacement, ductility coefficient and maximum load, as well as the corresponding horizontal displacement of the column, are reduced, while the energy dissipation grows. In addition, the yield displacement, yield load, and ductility coefficient increase with an increase in the incremental amplitude of displacement; however, the energy dissipation decreases under these conditions. The seismic performance of the SRC column under variable axial loads clearly exhibits asymmetry that is worse than that observed under constant axial loads.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.