Nguyen-Vu Luat, Jiuk Shin, S. Han, Ngoc-Vinh Nguyen, Kihak Lee
{"title":"Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models – a new approach","authors":"Nguyen-Vu Luat, Jiuk Shin, S. Han, Ngoc-Vinh Nguyen, Kihak Lee","doi":"10.12989/SCS.2021.40.3.461","DOIUrl":null,"url":null,"abstract":"This study aims to propose a new intelligence technique of predicting the ultimate capacity of axially loaded circular concrete-filled steel tube (CCFST) columns. A hybrid system based on one of the evolution algorithm – Genetic Algorithm (GA), fused with a well-known data-driven model of multivariate adaptive regression splines (MARS), namely G-MARS, was proposed and applied. To construct the MARS model, a database of 504 experimental cases was collected from the available literature. The GA was utilized to determine an optimal set of MARS's hyperparameters, to improve the prediction accuracy. The compiled database covered five input variables, including the diameter of the circular cross section-section (D), the wall thickness of the steel tube (t), the length of the column (L), the compressive strength of the concrete (fc), and the yield strength of the steel tube (fy). A new explicit formulation was derived from MARS in further analysis, and its estimation accuracy was validated against a benchmark model, G-ANN, an artificial neural network (ANN) optimized using the same metaheuristic algorithm. The simulation results in terms of error range and statistical indices indicated that the derived formula had a superior capability in predicting the ultimate capacity of CCFST columns, relative to the G-ANN model and the other existing empirical methods.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"40 1","pages":"461"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.40.3.461","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
This study aims to propose a new intelligence technique of predicting the ultimate capacity of axially loaded circular concrete-filled steel tube (CCFST) columns. A hybrid system based on one of the evolution algorithm – Genetic Algorithm (GA), fused with a well-known data-driven model of multivariate adaptive regression splines (MARS), namely G-MARS, was proposed and applied. To construct the MARS model, a database of 504 experimental cases was collected from the available literature. The GA was utilized to determine an optimal set of MARS's hyperparameters, to improve the prediction accuracy. The compiled database covered five input variables, including the diameter of the circular cross section-section (D), the wall thickness of the steel tube (t), the length of the column (L), the compressive strength of the concrete (fc), and the yield strength of the steel tube (fy). A new explicit formulation was derived from MARS in further analysis, and its estimation accuracy was validated against a benchmark model, G-ANN, an artificial neural network (ANN) optimized using the same metaheuristic algorithm. The simulation results in terms of error range and statistical indices indicated that the derived formula had a superior capability in predicting the ultimate capacity of CCFST columns, relative to the G-ANN model and the other existing empirical methods.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.