{"title":"Organelle Zones.","authors":"Kanae Sasaki, Hiderou Yoshida","doi":"10.1247/csf.19010","DOIUrl":null,"url":null,"abstract":"In research on cell biology, organelles have been a major unit of such analyses. Researchers have assumed that the inside of an organelle is almost uniform in regards to its function, even though each organelle has multiple functions. However, we are now facing conundrums that cannot be resolved so long as we regard organelles as functionally uniform units. For instance, how can cells control the diverse patterns of glycosylation of various secretory proteins in the endoplasmic reticulum and Golgi in an orderly manner with high accuracy? Here, we introduce the novel concept of organelle zones as a solution; each organelle has functionally distinct zones, and zones in different organelles closely interact each other in order to perform complex cellular functions. This Copernican Revolution from organelle biology to organelle zone biology will drastically change and advance our thoughts about cells.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.19010","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.19010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6
Abstract
In research on cell biology, organelles have been a major unit of such analyses. Researchers have assumed that the inside of an organelle is almost uniform in regards to its function, even though each organelle has multiple functions. However, we are now facing conundrums that cannot be resolved so long as we regard organelles as functionally uniform units. For instance, how can cells control the diverse patterns of glycosylation of various secretory proteins in the endoplasmic reticulum and Golgi in an orderly manner with high accuracy? Here, we introduce the novel concept of organelle zones as a solution; each organelle has functionally distinct zones, and zones in different organelles closely interact each other in order to perform complex cellular functions. This Copernican Revolution from organelle biology to organelle zone biology will drastically change and advance our thoughts about cells.