I. Manivannan, S. Ranganathan, S. Gopalakannan, S. Suresh, D. Candane
{"title":"Mechanical and wear surface characterisation of aluminium hybrid nanocomposite","authors":"I. Manivannan, S. Ranganathan, S. Gopalakannan, S. Suresh, D. Candane","doi":"10.1504/ijcmsse.2019.10026435","DOIUrl":null,"url":null,"abstract":"The newly engineered metal matrix nanocomposite (MMNC) of Al6061 reinforced with 0.4 wt% SiC and 0.5 wt% Gr hybrid nanocomposites were synthesised by ultrasonic assisted stir casting method. The pin-on-disc equipment were conducted on the prepared samples to investigate the tribological behaviour of the hybrid nanocomposite. The hybrid nanocomposite and wear surfaces have been characterised by field emission scanning electron microscope (FESEM) equipped with an energy dispersive spectrometer (EDS), optical microscope (OM) and 3D profilometer to understand the wear mechanisms. This study shows the effectiveness of incorporation of graphite in the hybrid nanocomposite for reduction of friction, wear and surface roughness. With the introduction of nano SiC and Gr particles into matrix alloy, the number and depth of grooves in worn surface of hybrid nanocomposites decreased. The Al/0.4SiC/0.5Gr hybrid nanocomposite showed superior tribological properties and self-lubricating ability compared to the matrix alloy.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2019.10026435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The newly engineered metal matrix nanocomposite (MMNC) of Al6061 reinforced with 0.4 wt% SiC and 0.5 wt% Gr hybrid nanocomposites were synthesised by ultrasonic assisted stir casting method. The pin-on-disc equipment were conducted on the prepared samples to investigate the tribological behaviour of the hybrid nanocomposite. The hybrid nanocomposite and wear surfaces have been characterised by field emission scanning electron microscope (FESEM) equipped with an energy dispersive spectrometer (EDS), optical microscope (OM) and 3D profilometer to understand the wear mechanisms. This study shows the effectiveness of incorporation of graphite in the hybrid nanocomposite for reduction of friction, wear and surface roughness. With the introduction of nano SiC and Gr particles into matrix alloy, the number and depth of grooves in worn surface of hybrid nanocomposites decreased. The Al/0.4SiC/0.5Gr hybrid nanocomposite showed superior tribological properties and self-lubricating ability compared to the matrix alloy.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.