C. Rajendran, R. Guru, S. Kavin, P. Navanithan, P. N. Kalathil
{"title":"Influence of tool rotation speed on microstructural characteristics and mechanical properties of friction stir welded AA2014-T6 aluminium alloy","authors":"C. Rajendran, R. Guru, S. Kavin, P. Navanithan, P. N. Kalathil","doi":"10.1504/ijcmsse.2019.10026437","DOIUrl":null,"url":null,"abstract":"Friction stir welding (FSW) is a promising solid-state welding process for precipitation hardening and high strength aluminium alloys. An experimental and theoretical investigation was carried out to check the significance of tool rotation speed on microstructural characteristics and tensile properties of high-strength alloy AA2014. FSW joints were made with varying tool rotation speed from 1,100 rpm to 1,900 rpm with an equal increment of 200 rpm, while the other parameters such as welding speed, shoulder diameter and tool tilt angle were kept constant. The strength of FSW joints was correlated with microhardness, microstructure and fractographs. The joint fabricated with the tool rotation speed of 1,500 rpm, welding speed of 50 mm/min, shoulder diameter of 6 mm and tool tilt angle of 1.5° exhibited superior strength (376 MPa) than the other joints. It could be achieved by the balanced flow of material and defect-free in the stir zone.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2019.10026437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Friction stir welding (FSW) is a promising solid-state welding process for precipitation hardening and high strength aluminium alloys. An experimental and theoretical investigation was carried out to check the significance of tool rotation speed on microstructural characteristics and tensile properties of high-strength alloy AA2014. FSW joints were made with varying tool rotation speed from 1,100 rpm to 1,900 rpm with an equal increment of 200 rpm, while the other parameters such as welding speed, shoulder diameter and tool tilt angle were kept constant. The strength of FSW joints was correlated with microhardness, microstructure and fractographs. The joint fabricated with the tool rotation speed of 1,500 rpm, welding speed of 50 mm/min, shoulder diameter of 6 mm and tool tilt angle of 1.5° exhibited superior strength (376 MPa) than the other joints. It could be achieved by the balanced flow of material and defect-free in the stir zone.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.