Thermo-mechanical evaluation of plasma sprayed YSZ-based multi-layered thermal barrier coatings

Debasis Das, R. Verma, Vipul Pathak
{"title":"Thermo-mechanical evaluation of plasma sprayed YSZ-based multi-layered thermal barrier coatings","authors":"Debasis Das, R. Verma, Vipul Pathak","doi":"10.1504/ijcmsse.2019.104701","DOIUrl":null,"url":null,"abstract":"The multi-layered YSZ, NiCoCrAlY, Cr2O3 and Al2O3 coatings of varying thickness (200 μm-400 μm) have been investigated for thermal barrier coating (TBC) application. Plasma spray technique has been utilised on piston crown to optimise the thermal fatigue life in view to reduce the heat losses. Four types of TBC overlay each with a 100 μm NiCrAlY bond coat were deposited on the A336 aluminium alloy substrate cut out of the diesel engine piston. The phase composition of coatings before and after the thermal shock testing was analysed by XRD and the lattice strain analysis was performed by Williamson-Hall analysis. It was observed that among the considered multi-layered coating configurations, those with 300 μm YSZ and 200 μm Cr2O3 top coat exhibited acceptable thermal shock resistance as the specimens sustain up to 298 and 325 thermal cycles respectively. The microstructural analysis suggested against the formation of any major deformity or structural changes at the higher temperature as investigated by thermal shock experiment.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijcmsse.2019.104701","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2019.104701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The multi-layered YSZ, NiCoCrAlY, Cr2O3 and Al2O3 coatings of varying thickness (200 μm-400 μm) have been investigated for thermal barrier coating (TBC) application. Plasma spray technique has been utilised on piston crown to optimise the thermal fatigue life in view to reduce the heat losses. Four types of TBC overlay each with a 100 μm NiCrAlY bond coat were deposited on the A336 aluminium alloy substrate cut out of the diesel engine piston. The phase composition of coatings before and after the thermal shock testing was analysed by XRD and the lattice strain analysis was performed by Williamson-Hall analysis. It was observed that among the considered multi-layered coating configurations, those with 300 μm YSZ and 200 μm Cr2O3 top coat exhibited acceptable thermal shock resistance as the specimens sustain up to 298 and 325 thermal cycles respectively. The microstructural analysis suggested against the formation of any major deformity or structural changes at the higher temperature as investigated by thermal shock experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子喷涂ysz基多层热障涂层的热力学性能评价
研究了不同厚度(200 μm-400 μm)的YSZ、NiCoCrAlY、Cr2O3和Al2O3多层涂层在热障涂层(TBC)中的应用。采用等离子喷涂技术对活塞冠进行热疲劳处理,以提高活塞冠的热疲劳寿命,减少活塞冠的热损失。在从柴油机活塞上切割出来的A336铝合金基体上,沉积了四种类型的TBC覆盖层,每种覆盖层都具有100 μm的NiCrAlY粘结层。采用XRD分析了热冲击试验前后涂层的相组成,采用Williamson-Hall分析了涂层的晶格应变。结果表明,在多层涂层结构中,表面涂层为300 μm YSZ和200 μm Cr2O3的涂层具有良好的抗热冲击性能,分别可承受298次和325次热循环。显微组织分析表明,热冲击实验表明,高温下不会形成任何主要的变形或结构变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
3
期刊介绍: IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.
期刊最新文献
Predicting the tensile behaviour of friction stir welded AA2024 and AA5083 alloy based on artificial neural network and mayfly optimization algorithm Corrosion estimation of Cu and Br based automotive parts exposed to biodiesel environment : Case of RSM and ANN Improving engine's lubrication based on optimized partial micro-textures Contribution of Electrical Resistivity Tomography to the Anticipation of Potential Disasters: Case of Pipe Ramming Works Under Road Embankments Numerical simulation of SiC crystal growth during physical vapor transport using the lattice Boltzmann - phase field model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1