ESTIMATION AND INFERENCE IN PREDICTIVE REGRESSIONS

IF 0.2 4区 经济学 Q4 ECONOMICS Hitotsubashi Journal of Economics Pub Date : 2013-12-01 DOI:10.15057/26018
Eiji Kurozumi, K. Aono
{"title":"ESTIMATION AND INFERENCE IN PREDICTIVE REGRESSIONS","authors":"Eiji Kurozumi, K. Aono","doi":"10.15057/26018","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze feasible bias-reduced versions of point estimates for predictive regressions: The plug-in estimates, which are based on the augmented regressions proposed by Amihud and Hurvich (2004) and Amihud, Hurvich and Wang (2010), and the grouped jackknife estimate by Quenouille (1949, 1956).We also derive the correct standard errors associated with these point estimates.The methods thus allow for a unified inferential framework, where point estimates and statistical inference are based on the same methods. Using the new estimates, we investigate U.S. stock returns and find that some variables are able to predict stock returns.","PeriodicalId":43705,"journal":{"name":"Hitotsubashi Journal of Economics","volume":"54 1","pages":"231-250"},"PeriodicalIF":0.2000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hitotsubashi Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.15057/26018","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze feasible bias-reduced versions of point estimates for predictive regressions: The plug-in estimates, which are based on the augmented regressions proposed by Amihud and Hurvich (2004) and Amihud, Hurvich and Wang (2010), and the grouped jackknife estimate by Quenouille (1949, 1956).We also derive the correct standard errors associated with these point estimates.The methods thus allow for a unified inferential framework, where point estimates and statistical inference are based on the same methods. Using the new estimates, we investigate U.S. stock returns and find that some variables are able to predict stock returns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测回归中的估计与推断
在本文中,我们分析了预测回归中可行的减少偏差的点估计版本:基于Amihud和Hurvich(2004)和Amihud, Hurvich和Wang(2010)提出的增广回归的插件估计,以及Quenouille(1949, 1956)提出的分组jackknife估计。我们还推导出与这些点估计相关的正确标准误差。因此,这些方法允许一个统一的推理框架,其中点估计和统计推断基于相同的方法。使用新的估计,我们调查了美国股票收益,并发现一些变量能够预测股票收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Floating population and demand for movie theaters in metropolitan cities Endogenous Timing in a Mixed Duopoly with Vertically Related Markets Impact of Outgrower Scheme on Yield,Output Price,and Income: A Rice-Farm-Level Study in the Mekong Delta,Vietnam Business Services,Trade,and Research Intensity Religion and Corporate Disclosure Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1